期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes 被引量:7
1
作者 郝蕴琦 叶青 +2 位作者 潘政清 蔡海文 瞿荣辉 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期253-256,共4页
The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensi... The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. 展开更多
关键词 Brillouin optical time domain reflectometry digital coherent detection simplex pulse codes signal-to-noise ratio
下载PDF
Influence of laser linewidth on performance of Brillouin optical time domain reflectometry 被引量:5
2
作者 郝蕴琦 叶青 +2 位作者 潘政清 蔡海文 瞿荣辉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期257-261,共5页
The effects of optical sources with different laser linewidths on Brillouin optical time domain reflectometry (BOTDR) are investigated numerically and experimentally. Simulation results show that the spectral linewi... The effects of optical sources with different laser linewidths on Brillouin optical time domain reflectometry (BOTDR) are investigated numerically and experimentally. Simulation results show that the spectral linewidth of spontaneous Brillouin scattering remains almost constant when the laser linewidth is less than 1 MHz at the same pulse width; otherwise, it increases sharply. A comparison between a fiber laser (FL) with 4-kHz linewidth at 3 dB and a distributed feedback (DFB) laser with 3-MHz linewidth is made experimentally. When a constant laser power is launched into the sensing fiber, the fitting linewidths of the beat signals (backscattered Brillouin light and local oscillator (LO)) is about 5 MHz wider for the DFB laser than for the FL and the intensity of the beat signal is about a half. Furthermore, the frequency fluctuation in the long sensing fiber is lower for the FL source, yielding about 2 MHz less than that of the DFB laser, indicating higher temperature/strain resolution. The experimental results are in good agreement with the numerical simulations. 展开更多
关键词 Brillouin optical time domain reflectometry (BOTDR) laser linewidth distributed feedback laser fiber laser
下载PDF
Fiber optic monitoring of an anti-slide pile in a retrogressive landslide 被引量:3
3
作者 Lei Zhang Honghu Zhu +1 位作者 Heming Han Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期333-343,共11页
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods... Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions. 展开更多
关键词 Anti-slide pile Multi-sliding surface Pile-soil interface Brillouin optical time domain reflectometry (BOTDR) Geotechnical monitoring Reservoir landslide
下载PDF
Interferometric Distributed Sensing System With Phase Optical Time-Domain Reflectometry 被引量:2
4
作者 Chen WANG Ying SHANG +3 位作者 Xiaohui LIU Chang WANG Hongzhong WANG Gangding PENG 《Photonic Sensors》 SCIE EI CAS CSCD 2017年第2期157-162,共6页
We demonstrate a distributed optical fiber sensing system based on the Michelson interferometer of the phase sensitive optical time domain reflectometer (q0-OTDR) for acoustic measurement. Phase, amplitude, frequenc... We demonstrate a distributed optical fiber sensing system based on the Michelson interferometer of the phase sensitive optical time domain reflectometer (q0-OTDR) for acoustic measurement. Phase, amplitude, frequency response, and location information can be directly obtained at the same time by using the passive 3 ×3 coupler demodulation. We also set an experiment and successfully restore the acoustic information. Meanwhile, our system has preliminary realized acoustic-phase sensitivity around -150 dB (re rad/μPa) in the experiment. 展开更多
关键词 Fiber optics sensors Rayleigh scattering optical time domain reflectometry INTERFEROMETRY
原文传递
Health Monitoring of Long-Haul Fiber Communication System Using Chaotic OTDR 被引量:1
5
作者 Mengmeng Chen Mingjiang Zhang +3 位作者 Shaoxiang Chen Jianguo Zhang Senlin Yan Yuncai Wang 《China Communications》 SCIE CSCD 2020年第5期1-11,共11页
A novel chaotic optical time-domain reflectometry(OTDR)-based approach was proposed for monitoring long-haul fiber communication systems with multiple fiber segments. The self-phase modulation and group velocity dispe... A novel chaotic optical time-domain reflectometry(OTDR)-based approach was proposed for monitoring long-haul fiber communication systems with multiple fiber segments. The self-phase modulation and group velocity dispersion effects of the optical cable was considered in demonstrating the proof-of-concept experiment and simulation. In experiments, the correlation peaks are clearly obtained from the correlation trace between the reference and reflected(or scattered) light signals propagating in three optical-fiber segments. The technique affords a high spatial resolution of 2 m, and further long-haul fiber simulations indicate that the sensing distance can be more than 3300 km. Thus, the new proposed technique can be effectively applied for health monitoring of long-haul fiber communication systems. 展开更多
关键词 fiber communication system chaotic signal optical time domain reflectometry
下载PDF
Performance of Slope Behavior Indicators in Unsaturated Pyroclastic Soils 被引量:3
6
作者 Luciano PICARELLI Emilia DAMIANO +3 位作者 Roberto GRECO Aldo MINARDO Lucio OLIVARES Luigi ZENI 《Journal of Mountain Science》 SCIE CSCD 2015年第6期1434-1447,共14页
Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to c... Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to continuously control the slope behaviour, until approaching failure conditions. The paper reported experimental data from smallscale physical models about the performance of Time Domain Reflectometry(TDR) and optical fibres, which act as the indicators of the incoming failure of slopes covered by unsaturated granular soils. Obtained results appear encouraging, since both sensors provide continuous information about the state of the slope, in terms of water content profiles and ongoing deformations, induced by rainwater infiltration, even immediately before the triggering of a fast landslide. 展开更多
关键词 Unsaturated granular soils Slope monitoring Rapid landslide optical fibre time domain reflectometry Probe
下载PDF
Recent Progress in Distributed Optical Fiber Raman Photon Sensors at China Jiliang University 被引量:8
7
作者 Zaixuan ZHANG Jianfeng WANG +11 位作者 Yi LI HuapingGONG Xiangdong YU Honglin LIU Yongxing JIN Juan KANG Chenxia LI Wensheng ZHANG Wenping ZHANG Chunliu ZHAO Xinyong DONG Shangzhong JIN 《Photonic Sensors》 SCIE EI CAS 2012年第2期127-147,共21页
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement dista... A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks. 展开更多
关键词 Distributed optical fiber sensor Raman scattering Rayleigh scattering Brillouin scattering fusionprinciple of optical fiber nonlinear scattering optical time domain reflectometry (OTDR)
原文传递
Development of Fully-Distributed Fiber Sensors Based on Brillouin Scattering 被引量:8
8
作者 Xuping ZHANG Yuangang LU +2 位作者 Feng WANG Hao LIANG Yixin ZHANG 《Photonic Sensors》 SCIE EI 2011年第1期54-61,共8页
Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technol... Brillouin scattering based optical fiber sensors(BOFS)have the unique advantages over other sensors such as long distance,fully distributed,and multi-parameter sensing.The progresses on the development of BOFS technology in Nanjing University are reviewed.The key technologies to make BOFS with ultra-long distance,high spatial resolution,and fast measuring speed are discussed and realized. 展开更多
关键词 Brillouin scattering fully distributed optical fiber sensor Brillouin optical time domain reflectometry strain monitoring
原文传递
Study of Ф-OTDR Stability for Dynamic Strain Measurement in Piezoelectric Vibration
9
作者 Meiqi REN Ping LU Liang CHEN Xiaoyi BAO 《Photonic Sensors》 SCIE EI CAS CSCD 2016年第3期199-208,共10页
In a phase-sensitive optical-time domain reflectometry (Ф-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by sto... In a phase-sensitive optical-time domain reflectometry (Ф-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Ф-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Ф-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values. 展开更多
关键词 optical fiber sensors phase-sensitive optical time domain reflectometry (OTDR) VIBRATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部