The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and c...Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.展开更多
We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population...We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.展开更多
The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux prof...The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux profile, which is used in this work to formulate a PDE-constrained op-timization problem under a quasi-static assumption. The minimum surface theory and constrained numeric optimization are then applied to achieve suboptimal solutions. Since the transient dy- namics is pre-given by the minimum surface theory, then this method can dramatically accelerate the solution process. In order to be robust under external uncertainties in real implementations, PID (proportional-integral-derivative) controllers are used to force the actuators to follow the computational input trajectories. It has the potential to implement in real-time for long time discharges by combining this method with the magnetic equilibrium update.展开更多
A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that gov...A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.展开更多
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of ...The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.展开更多
In the framework of stochastic processes, the connection between the dynamic programming scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach based on the Fokker-Planck equatio...In the framework of stochastic processes, the connection between the dynamic programming scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach based on the Fokker-Planck equation is discussed. Under appropriate assumptions it is shown that the two strategies are equivalent in the case of expected cost functionals, while the Fokker-Planck formalism allows considering a larger classof objectives. To illustratethe connection between the two control strategies, the cases of an Itō stochastic process and of a piecewise-deterministic process are considered.展开更多
Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the co...Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.展开更多
Waterfiooding is a process where water is injected into an oil reservoir to supplement its natural pressure for increment in productivity. The reservoir properties are highly heterogeneous, its states change as produc...Waterfiooding is a process where water is injected into an oil reservoir to supplement its natural pressure for increment in productivity. The reservoir properties are highly heterogeneous, its states change as production progresses which require varying injection and production settings for economic recovery. As water is injected into the reservoir, more oil is expected to be produced. There is also likelihood that water is produced in association with the oil. The worst case is when the injected water meanders through the reservoir, it bypasses pools of oil and gets produced, Therefore, any effort geared toward finding the optimal settings to maximize the value of this venture can never be over emphasized. Waterflooding can be formulated as an optimal control problem. However, traditional optimal control is an open-loop solution, hence cannot cope with various uncertainties inevitably existing in any practical systems. Reservoir models are highly uncertain. Its properties are known with some degrees of certainty near the well-bore region only. In this work, a novel data-driven approach for control variable (CV) selection was proposed and applied to reservoir waterflooding process for a feedback strategy resulting in optimal or near optimal operation. The results indicated that the feedback control method was close to optimal in the absence of uncertainty. The loss recorded in the value of performance index, net present value (NPV) was only 0.26%. Furthermore, the new strategy performs better than the open-loop optimal control solution when system/model mismatch was considered. The performance depends on the scale of the uncertainty introduced. A gain in NPV as high as 30.04% was obtained.展开更多
In this paper we formulated and analyzed an optimal deterministic eco-epidemiological model for the dynamics of maize streak virus(MSV)and examine the best strategy to fight maize population from maize streak disease(...In this paper we formulated and analyzed an optimal deterministic eco-epidemiological model for the dynamics of maize streak virus(MSV)and examine the best strategy to fight maize population from maize streak disease(MSD).The optimal control model is developed with three control interventions,namely prevention(u_(1)),quarantine(u_(2))and chemical control(u_(3)).To achieve an optimal control strategy,we used the Pontryagin’s maximum principle obtain the Hamiltonian,the adjoint variables,the characterization of the controls and the optimality system.Numerical simulations are performed using Forward-backward sweep iterative method.The findings show that each integrated strategy is able to mitigate the disease in the specified time.However due to limited resources,it is important to find a cost-effective strategy.Using Incremental Cost-Effectiveness Ratio(ICER)a cost-effectiveness analysis is investigated and determined that the combination of prevention and quarantine is the best cost-effective strategy from the other integrated strategies.Therefore,policymakers and stakeholders should apply the integrated intervention to stop the spread of MSV in the maize population.展开更多
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. No...It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.展开更多
In this paper a uniqueness theorem for a skewperiodic boundary value problem is obtained. By using the optimal control method, we derive the best estimate for the integration mean ensuring that the results hold.
A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: dispers...A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.展开更多
A mesh-independent,robust,and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented.We first consider a Lavrentiev regularization of the state-constrained optimiz...A mesh-independent,robust,and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented.We first consider a Lavrentiev regularization of the state-constrained optimization problem.Then,a multigrid scheme is designed for the numerical solution of the regularized optimality system.Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration.Results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency.展开更多
Avian influenza, caused by influenza A viruses, has received worldwide attention over recent years. In this study, we formulate a mathematical model for avian influenza that includes human human transmission and incor...Avian influenza, caused by influenza A viruses, has received worldwide attention over recent years. In this study, we formulate a mathematical model for avian influenza that includes human human transmission and incorporates the effects of infection latency and treatments. We investigate the essential dynamics of the model through an equilibrium analysis. Meanwhile, we explore effective treatment strategies to control avian influenza outbreaks using optimal control theory. Our results show that strategically deployed medical treatments can significantly reduce the numbers of exposed and infection persons.展开更多
Numerical solutions of optimal control problems are influenced by the appropriate choice of coordinates.The proposed method based on the variational approach to map costates between sets of coordinates and/or elements...Numerical solutions of optimal control problems are influenced by the appropriate choice of coordinates.The proposed method based on the variational approach to map costates between sets of coordinates and/or elements is suitable for solving optimal control problems using the indirect formalism of optimal control theory.The Jacobian of the nonlinear map between any two sets of coordinates and elements is a key component of costate vector mapping theory.A new solution for the class of planar,free-terminal-time,minimum-time,orbit rendezvous maneuvers is also presented.The accuracy of the costate mapping is verified,and its utility is demonstrated by solving minimum-time and minimum-fuel spacecraft trajectory optimization problems.展开更多
Background and Objective:For dengue outbreak prevention and vectors reduction,fundamental role of control parameters like vaccination against dengue virus in human population and insecticide in mosquito population hav...Background and Objective:For dengue outbreak prevention and vectors reduction,fundamental role of control parameters like vaccination against dengue virus in human population and insecticide in mosquito population have been addressed theoretically and numerically.For this purpose,an existing model was modified to optimize dengue fever.Methodology:Using Pontryagin’s maximum principle,the dynamics of infection for the optimal control problem was addressed,further,defined cost functional,established existence of optimal control,stated Hamiltonian for characterization of optimization.Results:Numerical simulations for optimal state variables and control variables were performed.Conclusion:Our findings demonstrate that with low cost of control variables,state variable such as recovered population increases gradually and decrease other state variables for host and vector population.展开更多
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
文摘Respiratory variables, including tidal volume and respiratory rate, display significant variability. The probability density function (PDF) of respiratory variables has been shown to contain clinical information and can predict the risk for exacerbation in asthma. However, it is uncertain why this PDF plays a major role in predicting the dynamic conditions of the respiratory system. This paper introduces a stochastic optimal control model for noisy spontaneous breathing, and obtains a Shrödinger’s wave equation as the motion equation that can produce a PDF as a solution. Based on the lobules-bronchial tree model of the lung system, the tidal volume variable was expressed by a polar coordinate, by use of which the Shrödinger’s wave equation of inter-breath intervals (IBIs) was obtained. Through the wave equation of IBIs, the respiratory rhythm generator was characterized by the potential function including the PDF and the parameter concerning the topographical distribution of regional pulmonary ventilations. The stochastic model in this study was assumed to have a common variance parameter in the state variables, which would originate from the variability in metabolic energy at the cell level. As a conclusion, the PDF of IBIs would become a marker of neuroplasticity in the respiratory rhythm generator through Shr?dinger’s wave equation for IBIs.
基金This work was supported by the National Natural Science Foundations of China(Grant Nos.12275033,61973317,and 12274470)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(Grant No.2022JJ10070)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ30582)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.20A025).
文摘We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.
基金supported partially by the US NSF CAREER award program (ECCS-0645086)National Natural Science Foundation of China (No.F030119)+2 种基金Zhejiang Provincial Natural Science Foundation of China (Nos.Y1110354, Y6110751)the Fundamental Research Funds for the Central Universities of China (No.1A5000-172210101)the Natural Science Foundation of Ningbo (No.2010A610096)
文摘The q-profile control problem in the ramp-up phase of plasma discharges is consid- ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics of the poloidal magnetic flux profile, which is used in this work to formulate a PDE-constrained op-timization problem under a quasi-static assumption. The minimum surface theory and constrained numeric optimization are then applied to achieve suboptimal solutions. Since the transient dy- namics is pre-given by the minimum surface theory, then this method can dramatically accelerate the solution process. In order to be robust under external uncertainties in real implementations, PID (proportional-integral-derivative) controllers are used to force the actuators to follow the computational input trajectories. It has the potential to implement in real-time for long time discharges by combining this method with the magnetic equilibrium update.
文摘A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.
文摘The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
基金the support by the European Science Foundation Exchange OPTPDE Grantthe support of CADMOS(Center for Advances Modeling and Science)Supported in part by the European Union under Grant Agreement“Multi-ITN STRIKE-Novel Methods in Computational Finance”.Fund Project No.304617 Marie Curie Research Training Network.
文摘In the framework of stochastic processes, the connection between the dynamic programming scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach based on the Fokker-Planck equation is discussed. Under appropriate assumptions it is shown that the two strategies are equivalent in the case of expected cost functionals, while the Fokker-Planck formalism allows considering a larger classof objectives. To illustratethe connection between the two control strategies, the cases of an Itō stochastic process and of a piecewise-deterministic process are considered.
文摘Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each “player” is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.
基金supported by Petroleum Technology Development(PTDF),Abuja
文摘Waterfiooding is a process where water is injected into an oil reservoir to supplement its natural pressure for increment in productivity. The reservoir properties are highly heterogeneous, its states change as production progresses which require varying injection and production settings for economic recovery. As water is injected into the reservoir, more oil is expected to be produced. There is also likelihood that water is produced in association with the oil. The worst case is when the injected water meanders through the reservoir, it bypasses pools of oil and gets produced, Therefore, any effort geared toward finding the optimal settings to maximize the value of this venture can never be over emphasized. Waterflooding can be formulated as an optimal control problem. However, traditional optimal control is an open-loop solution, hence cannot cope with various uncertainties inevitably existing in any practical systems. Reservoir models are highly uncertain. Its properties are known with some degrees of certainty near the well-bore region only. In this work, a novel data-driven approach for control variable (CV) selection was proposed and applied to reservoir waterflooding process for a feedback strategy resulting in optimal or near optimal operation. The results indicated that the feedback control method was close to optimal in the absence of uncertainty. The loss recorded in the value of performance index, net present value (NPV) was only 0.26%. Furthermore, the new strategy performs better than the open-loop optimal control solution when system/model mismatch was considered. The performance depends on the scale of the uncertainty introduced. A gain in NPV as high as 30.04% was obtained.
文摘In this paper we formulated and analyzed an optimal deterministic eco-epidemiological model for the dynamics of maize streak virus(MSV)and examine the best strategy to fight maize population from maize streak disease(MSD).The optimal control model is developed with three control interventions,namely prevention(u_(1)),quarantine(u_(2))and chemical control(u_(3)).To achieve an optimal control strategy,we used the Pontryagin’s maximum principle obtain the Hamiltonian,the adjoint variables,the characterization of the controls and the optimality system.Numerical simulations are performed using Forward-backward sweep iterative method.The findings show that each integrated strategy is able to mitigate the disease in the specified time.However due to limited resources,it is important to find a cost-effective strategy.Using Incremental Cost-Effectiveness Ratio(ICER)a cost-effectiveness analysis is investigated and determined that the combination of prevention and quarantine is the best cost-effective strategy from the other integrated strategies.Therefore,policymakers and stakeholders should apply the integrated intervention to stop the spread of MSV in the maize population.
基金supported by the National Natural Science Foundation of China(Grant No.61205108)the High Performance Computing(HPC)Foundation of National University of Defense Technology,China
文摘It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.
文摘In this paper a uniqueness theorem for a skewperiodic boundary value problem is obtained. By using the optimal control method, we derive the best estimate for the integration mean ensuring that the results hold.
基金the National Natural Science Foundation of China (70572045).
文摘A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.
文摘A mesh-independent,robust,and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented.We first consider a Lavrentiev regularization of the state-constrained optimization problem.Then,a multigrid scheme is designed for the numerical solution of the regularized optimality system.Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration.Results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency.
基金Acknowledgments Chairat Modnak thanks Thailand Research Fund (No. TRG5780041), Faculty of Science at Naresuan University, and Naresuan University Research Fund for partial support of this work. Jin Wang was partially supported by the National Science Foundation under Grant No. 1412826.
文摘Avian influenza, caused by influenza A viruses, has received worldwide attention over recent years. In this study, we formulate a mathematical model for avian influenza that includes human human transmission and incorporates the effects of infection latency and treatments. We investigate the essential dynamics of the model through an equilibrium analysis. Meanwhile, we explore effective treatment strategies to control avian influenza outbreaks using optimal control theory. Our results show that strategically deployed medical treatments can significantly reduce the numbers of exposed and infection persons.
文摘Numerical solutions of optimal control problems are influenced by the appropriate choice of coordinates.The proposed method based on the variational approach to map costates between sets of coordinates and/or elements is suitable for solving optimal control problems using the indirect formalism of optimal control theory.The Jacobian of the nonlinear map between any two sets of coordinates and elements is a key component of costate vector mapping theory.A new solution for the class of planar,free-terminal-time,minimum-time,orbit rendezvous maneuvers is also presented.The accuracy of the costate mapping is verified,and its utility is demonstrated by solving minimum-time and minimum-fuel spacecraft trajectory optimization problems.
文摘Background and Objective:For dengue outbreak prevention and vectors reduction,fundamental role of control parameters like vaccination against dengue virus in human population and insecticide in mosquito population have been addressed theoretically and numerically.For this purpose,an existing model was modified to optimize dengue fever.Methodology:Using Pontryagin’s maximum principle,the dynamics of infection for the optimal control problem was addressed,further,defined cost functional,established existence of optimal control,stated Hamiltonian for characterization of optimization.Results:Numerical simulations for optimal state variables and control variables were performed.Conclusion:Our findings demonstrate that with low cost of control variables,state variable such as recovered population increases gradually and decrease other state variables for host and vector population.