The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy avai...The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.展开更多
A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has ...A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has robustness to uncertainty of frequency, which makes it practical in engineering. Several time optimal and time-fuel optimal control strategies are designed for a kind of single flexible link. Simulation results validate the feasibility of our method.展开更多
Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventi...Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.展开更多
This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T80...This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T800 carbon fiber and AG80 epoxy resin to design pressure vessels, this material combination can significantly improve the interlaminar shear strength and heat resistance. The article elaborates on the basic concepts and failure criteria of composite materials, such as the maximum stress criterion, the maximum strain criterion, the Tsai-Hill criterion, etc. With the help of the APDL parametric modeling language, the arc-shaped, parabolic, elliptical, and fitting curve-shaped pressure vessel models are accurately constructed, and the material property settings and mesh division are completed. Subsequently, APDL is used for static analysis, and the genetic algorithm toolbox built into Matlab is combined to carry out optimization calculations to determine the optimal laying angle. The research results show that the equivalent stress corresponding to the optimal laying angle of the arc-shaped pressure vessel is 5.3685e+08 Pa, the elliptical one is 5.1969e+08 Pa, the parabolic one is 5.8692e+08 Pa, and the fitting curve-shaped one is 5.36862e+08 Pa. Among them, the stress distribution of the fitting curve-shaped pressure vessel is relatively more uniform, with a deformation of 0.568E−03 m, a minimum equivalent stress value of 0.261E+09 Pa, a maximum equivalent stress value of 0.537E+09 Pa, and a ratio of 0.48, which conforms to the equivalent stress criterion. In addition, the fitting curve of this model can adapt to various models and has higher practical value. However, the stress distribution of the elliptical and parabolic pressure vessels is uneven, and their applicability is poor. In the future, further exploration can be conducted on the application of the fitting curve model in composite materials to optimize the design of pressure vessels. This study provides important theoretical support and practical guidance for the design of composite material pressure vessels.展开更多
Orientation optimization plays an important role in the lay-up design of composite structures.Earlier orientation optimization methods face the main problem of huge number of design variables.Recently,a patch concept ...Orientation optimization plays an important role in the lay-up design of composite structures.Earlier orientation optimization methods face the main problem of huge number of design variables.Recently,a patch concept is proposed to reduce the number of design variables.However,the traditional stress-based method can not deal with patch orientation optimization of composite structures.In this paper,we propose an extended stress-based method to deal with such problems.The considered problems are to minimize the mean compliance under multiple load cases or to maximize the eigenvalues of a composite structure.Four numerical examples are solved to demonstrate the efficiency of the new method.It is shown that the new method has the ability to deal with constraints on orientation angle,such as symmetric,antisymmetric and discrete orientation angle constraints.The iteration is less time-consuming because no sensitivity analysis is needed and a quick convergence rate can be achieved.展开更多
This paper presents a topology optimization method for variable stiffness composite panels with varying fiber orientation and curvilinear fiber path.Non-uniform rational B-Splines(NURBS)based Isogeometric analysis(IGA...This paper presents a topology optimization method for variable stiffness composite panels with varying fiber orientation and curvilinear fiber path.Non-uniform rational B-Splines(NURBS)based Isogeometric analysis(IGA)is utilized for the numerical computation of the general minimum compliance problem.The sensitivity analysis of the structure compliance function for the density and bi-layer orientation is conducted.The bi-layer fiber paths in the design domain are generated using streamline method and updated by divided pieces reselection method after the optimization process.Several common examples are tested to demonstrate the effectiveness of the method.The results show that the proposed method can generate more manufacturable fiber paths than some typical topology optimization methods.展开更多
The electromagnetic torque and speed in Switched Reluctance Motor (SRM) greatly depend on the excitation parametersi.e. turn-on angle, turn-off angle, dwell angle and magnitude of the phase currents of its phases...The electromagnetic torque and speed in Switched Reluctance Motor (SRM) greatly depend on the excitation parametersi.e. turn-on angle, turn-off angle, dwell angle and magnitude of the phase currents of its phases. At lower speeds, a change in the current contributes the torque requirement which can be achieved either by voltage control (pulse width modulation) or instantaneous current control techniques. At high speeds, due to high back EMF, the regulation of current is crucial and achieved with the control of switching angles of phases. This type of control is referred as average torque control, where the torque is averaged over one stroke (2π/N<sub>r</sub>). With constant dwell angle, advancing the phase angle influences the current into the phase winding at minimum inductance position. It has more time to get the current out of the phase winding before the rotor reaches the negative inductance slope. To maintain the speed of the motor at different load conditions, the turn-on and turn-off angles are adaptively varied. The change in dwell angle may be required where the turn-on and turn-off angle may not be sufficient to reach the required speed. In this paper, a new algorithm is proposed for self tuning of switching parameters of SRM. The proposed algorithm is simulated in MATLAB-Simulink and experimentally validated with Field Programmable Gated Array (FPGA) using MATLAB- system generator environment.展开更多
The two-dimensional barrier passage is studied in the framework of Langevin statistical reactive dynamics.The optimal incident angle for a particle diffusing in the dissipative non-orthogonal environment with various ...The two-dimensional barrier passage is studied in the framework of Langevin statistical reactive dynamics.The optimal incident angle for a particle diffusing in the dissipative non-orthogonal environment with various strengthsof coupling between the two degrees of freedom is systematically calculated.The optimal diffusion path of the particlein a non-Ohmic damping system is revealed to have a probability to return to the potential valley under the combinedinfluence of the off-diagonal system tensors.展开更多
A novel method of realizing the optimal transmission of the crank-and-rockermechanism is presented. The optimal combination design is made by finding the related optimaltransmission parameters. The diagram of the opti...A novel method of realizing the optimal transmission of the crank-and-rockermechanism is presented. The optimal combination design is made by finding the related optimaltransmission parameters. The diagram of the optimal transmission is drawn. In the diagram, therelation among mini-mum transmission angle, the coefficient of travel speed variation, theoscillating angle of the rocker and the length of the bars is shown, concisely, conveniently anddirectly. The method possesses the main characteristic. That it is to achieve the optimaltransmission parameters under the transmission angle by directly choosing in the diagram, accordingto the given requirements. The characteristics of the mechanical transmission can be improved togain the optimal transmission effect by the method. Especially, the method is simple and convenientin practical use.展开更多
Based on the exploration of the engineering geology and the rock mechan-ics testing, limit equilibrium analysis method was adopted to calculate the stability of the Huogeqi Copper Mine slope, the results show that the...Based on the exploration of the engineering geology and the rock mechan-ics testing, limit equilibrium analysis method was adopted to calculate the stability of the Huogeqi Copper Mine slope, the results show that the original slope angle is too con-servative and the slope have the potential of more preferable slope angle. In order to discuss the possibility of slope angle enhancement, sensitivity analysis of parameters related to limit state slope was made. Quantitatively determined angle value of the add-ing and the optimal slope angle was obtained. The study having performed showed that it is not only useful for the safety control of open-pit mine slope but also for the open-pit mine design for the similar geological condition.展开更多
Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate...Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.展开更多
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ...This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.展开更多
This paper provides a parametric study to obtain the optimal wing rotation angle for the generation of maximum transla- tional force in an insect-mimicking Flapping-Wing Micro Air Vehicle (FWMAV) during hovering. Th...This paper provides a parametric study to obtain the optimal wing rotation angle for the generation of maximum transla- tional force in an insect-mimicking Flapping-Wing Micro Air Vehicle (FWMAV) during hovering. The blade element theory and momentum theory were combined to obtain the equation from which the translational aerodynamic force could be esti- mated. This equation was converted into a non-dimensional form, so that the effect of normalized parameters on the thrust coefficient could be analyzed. The research showed that the thrust coefficient for a given wing section depends on two factors, the rotation angle of the wing section and the ratio of the chord to the travel distance of the wing section in one flapping cycle. For each ratio that we investigated, we could arrive at an optimal rotation angle corresponding to a maximum thrust coefficient. This study may be able to provide guidance for the FWMAV design.展开更多
In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure...In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure that may arise due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows.According to the bilateral filter,sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering.Then,the filtered sensitivities are used to update the design variables.Through several numerical examples,the effectiveness of the method was verified.展开更多
This paper presents an effective fiber angle optimization method for two and multi-layered variable stiffness composites.A gradient-based fiber angle optimization method is developed based on isogeometric analysis(IGA...This paper presents an effective fiber angle optimization method for two and multi-layered variable stiffness composites.A gradient-based fiber angle optimization method is developed based on isogeometric analysis(IGA).Firstly,the element densities and fiber angles for two and multi-layered composites are synchronously optimized using an extended Bi-layered continuous fiber angle optimization method(XBi-CFAO).The densities and fiber angles in the base layer are attached to the control points.The structure response and sensitivity analysis are accomplished using the non-uniform rational B-spline(NURBS)based IGA.By the benefit of the B-spline space,this method is free from checkerboards,and no additional filtering is needed to smooth the sensitivity numbers.Then the curved fiber paths are generated using the streamline method and the discontinuous fiber paths are smoothed using a partitioned selection process.The proposed method in the paper can alleviate the phenomenon of fiber discontinuity,enhance information retention for the optimized fiber angles of the singular points and save calculating resources effectively.展开更多
This paper presents a study on the concur- rent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new...This paper presents a study on the concur- rent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new type of design variable. The new model is based on the assumptions that a structure is made of a material with the same microstructure, and the material may have a different orientation within the design domain of the structure. The homogenization theory is applied to link the material and structure scales. An additional post-processing technique is developed for modifying the obtained design to avoid local optima caused by the use of orientation angle variables. Numerical examples are presented to illustrate the viabil- ity and effectiveness of the proposed model. It is found that significant improvement in structural performance can be achieved by optimizing the orientation of microstructures in concurrent topology optimization of structures and materials.展开更多
To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of...To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.展开更多
AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedu...AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedure that these parameters are affected by the firing angle. Consideration trade of between these parameters can cause be selected suitable firing angle for optimal working of the compensator. In this paper is defined an objective function which includes the above parameters. This objective function is optimized through appropriate weighting factor for any parameters and the optimal firing angle will be obtained. So, the mention parameters can be selected optimally.展开更多
A formal analysis to footprint problem with effects of angle of attack (AOA) is presented. First a flexible and rapid standardized method for footprint generation is developed. Zero bank angle control strategy and t...A formal analysis to footprint problem with effects of angle of attack (AOA) is presented. First a flexible and rapid standardized method for footprint generation is developed. Zero bank angle control strategy and the maximum crossrange method are used to obtain virtual target set; afterward, closed-loop bank angle guidance law is used to find footprint by solving closest approach problem for each element in virtual target set. Then based on quasi-equilibrium glide condition, the typical inequality reentry trajectory constraints are converted to angle of attack lower boundary constraint. Constrained by the lower boundary, an original and practical angle of attack parametric method is proposed. By using parametric angle of attack profile, optimization algorithm for angle of attack is designed and the impact of angle of attack to footprint is discussed. Simulations with different angle of attack profiles are presented to demonstrate the performance of the proposed footprint solution method and validity of optimal algorithm.展开更多
文摘The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.
基金This project is supported by National 211 Project.
文摘A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has robustness to uncertainty of frequency, which makes it practical in engineering. Several time optimal and time-fuel optimal control strategies are designed for a kind of single flexible link. Simulation results validate the feasibility of our method.
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.
文摘This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T800 carbon fiber and AG80 epoxy resin to design pressure vessels, this material combination can significantly improve the interlaminar shear strength and heat resistance. The article elaborates on the basic concepts and failure criteria of composite materials, such as the maximum stress criterion, the maximum strain criterion, the Tsai-Hill criterion, etc. With the help of the APDL parametric modeling language, the arc-shaped, parabolic, elliptical, and fitting curve-shaped pressure vessel models are accurately constructed, and the material property settings and mesh division are completed. Subsequently, APDL is used for static analysis, and the genetic algorithm toolbox built into Matlab is combined to carry out optimization calculations to determine the optimal laying angle. The research results show that the equivalent stress corresponding to the optimal laying angle of the arc-shaped pressure vessel is 5.3685e+08 Pa, the elliptical one is 5.1969e+08 Pa, the parabolic one is 5.8692e+08 Pa, and the fitting curve-shaped one is 5.36862e+08 Pa. Among them, the stress distribution of the fitting curve-shaped pressure vessel is relatively more uniform, with a deformation of 0.568E−03 m, a minimum equivalent stress value of 0.261E+09 Pa, a maximum equivalent stress value of 0.537E+09 Pa, and a ratio of 0.48, which conforms to the equivalent stress criterion. In addition, the fitting curve of this model can adapt to various models and has higher practical value. However, the stress distribution of the elliptical and parabolic pressure vessels is uneven, and their applicability is poor. In the future, further exploration can be conducted on the application of the fitting curve model in composite materials to optimize the design of pressure vessels. This study provides important theoretical support and practical guidance for the design of composite material pressure vessels.
基金supported by the National Science Fund for Distinguished Young Scholars(10925212)the National Natural Science Foundation of China(11002113)the National Basic Research Program of China(2011CB610304)
文摘Orientation optimization plays an important role in the lay-up design of composite structures.Earlier orientation optimization methods face the main problem of huge number of design variables.Recently,a patch concept is proposed to reduce the number of design variables.However,the traditional stress-based method can not deal with patch orientation optimization of composite structures.In this paper,we propose an extended stress-based method to deal with such problems.The considered problems are to minimize the mean compliance under multiple load cases or to maximize the eigenvalues of a composite structure.Four numerical examples are solved to demonstrate the efficiency of the new method.It is shown that the new method has the ability to deal with constraints on orientation angle,such as symmetric,antisymmetric and discrete orientation angle constraints.The iteration is less time-consuming because no sensitivity analysis is needed and a quick convergence rate can be achieved.
基金supported by the National Key R&D Project of China(Grant No.2018YFB1700803,and Grant No.2018YFB1700804)received by Qifu Wang.
文摘This paper presents a topology optimization method for variable stiffness composite panels with varying fiber orientation and curvilinear fiber path.Non-uniform rational B-Splines(NURBS)based Isogeometric analysis(IGA)is utilized for the numerical computation of the general minimum compliance problem.The sensitivity analysis of the structure compliance function for the density and bi-layer orientation is conducted.The bi-layer fiber paths in the design domain are generated using streamline method and updated by divided pieces reselection method after the optimization process.Several common examples are tested to demonstrate the effectiveness of the method.The results show that the proposed method can generate more manufacturable fiber paths than some typical topology optimization methods.
文摘The electromagnetic torque and speed in Switched Reluctance Motor (SRM) greatly depend on the excitation parametersi.e. turn-on angle, turn-off angle, dwell angle and magnitude of the phase currents of its phases. At lower speeds, a change in the current contributes the torque requirement which can be achieved either by voltage control (pulse width modulation) or instantaneous current control techniques. At high speeds, due to high back EMF, the regulation of current is crucial and achieved with the control of switching angles of phases. This type of control is referred as average torque control, where the torque is averaged over one stroke (2π/N<sub>r</sub>). With constant dwell angle, advancing the phase angle influences the current into the phase winding at minimum inductance position. It has more time to get the current out of the phase winding before the rotor reaches the negative inductance slope. To maintain the speed of the motor at different load conditions, the turn-on and turn-off angles are adaptively varied. The change in dwell angle may be required where the turn-on and turn-off angle may not be sufficient to reach the required speed. In this paper, a new algorithm is proposed for self tuning of switching parameters of SRM. The proposed algorithm is simulated in MATLAB-Simulink and experimentally validated with Field Programmable Gated Array (FPGA) using MATLAB- system generator environment.
基金Supported by the Scientific Research Starting Foundation of Qufu Normal University and the National Natural Science Foundation of China under Grant No.10847101
文摘The two-dimensional barrier passage is studied in the framework of Langevin statistical reactive dynamics.The optimal incident angle for a particle diffusing in the dissipative non-orthogonal environment with various strengthsof coupling between the two degrees of freedom is systematically calculated.The optimal diffusion path of the particlein a non-Ohmic damping system is revealed to have a probability to return to the potential valley under the combinedinfluence of the off-diagonal system tensors.
文摘A novel method of realizing the optimal transmission of the crank-and-rockermechanism is presented. The optimal combination design is made by finding the related optimaltransmission parameters. The diagram of the optimal transmission is drawn. In the diagram, therelation among mini-mum transmission angle, the coefficient of travel speed variation, theoscillating angle of the rocker and the length of the bars is shown, concisely, conveniently anddirectly. The method possesses the main characteristic. That it is to achieve the optimaltransmission parameters under the transmission angle by directly choosing in the diagram, accordingto the given requirements. The characteristics of the mechanical transmission can be improved togain the optimal transmission effect by the method. Especially, the method is simple and convenientin practical use.
基金Supported by the National Nature Science Foundation of China(50074002)
文摘Based on the exploration of the engineering geology and the rock mechan-ics testing, limit equilibrium analysis method was adopted to calculate the stability of the Huogeqi Copper Mine slope, the results show that the original slope angle is too con-servative and the slope have the potential of more preferable slope angle. In order to discuss the possibility of slope angle enhancement, sensitivity analysis of parameters related to limit state slope was made. Quantitatively determined angle value of the add-ing and the optimal slope angle was obtained. The study having performed showed that it is not only useful for the safety control of open-pit mine slope but also for the open-pit mine design for the similar geological condition.
基金Supported by College Doctoral- Program Special ResearchFund of the Ministry of Education (No.970 0 562 1 )
文摘Serious commutation lag occurs when a Brushless DC Motor(BLDCM) operates at high speeds,and this leads to torque decline with ripple.In this paper,an advanced conduction control scheme is proposed which can accelerate the commutation and enhance the torque production remarkably.Besides,an on line adjusting algorithm based on the Golden Section Method is adopted to search the optimal advanced conduction angle.Simulation and experimental results verify the feasibility and effectivity of the scheme proposed.
基金financial support for this research was provided by the Program (Grants 11372060, 91216201) of the National Natural Science Foundation of ChinaProgram (LJQ2015026 ) for Excellent Talents at Colleges and Universities in Liaoning Province+3 种基金the Major National Science and Technology Project (2011ZX02403-002)111 project (B14013)Fundamental Research Funds for the Central Universities (DUT14LK30)the China Scholarship Fund
文摘This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.
文摘This paper provides a parametric study to obtain the optimal wing rotation angle for the generation of maximum transla- tional force in an insect-mimicking Flapping-Wing Micro Air Vehicle (FWMAV) during hovering. The blade element theory and momentum theory were combined to obtain the equation from which the translational aerodynamic force could be esti- mated. This equation was converted into a non-dimensional form, so that the effect of normalized parameters on the thrust coefficient could be analyzed. The research showed that the thrust coefficient for a given wing section depends on two factors, the rotation angle of the wing section and the ratio of the chord to the travel distance of the wing section in one flapping cycle. For each ratio that we investigated, we could arrive at an optimal rotation angle corresponding to a maximum thrust coefficient. This study may be able to provide guidance for the FWMAV design.
基金This research work was supported by the National Natural Science Foundation of China(Grant No.51975227)the Natural Science Foundation for Distinguished Young Scholars of Hubei Province,China(Grant No.2017CFA044).
文摘In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure that may arise due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows.According to the bilateral filter,sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering.Then,the filtered sensitivities are used to update the design variables.Through several numerical examples,the effectiveness of the method was verified.
基金This research work is supported by the National Key R&D Project of China(Grant Nos.2018YFB1700803 and 2018YFB1700804)managed by Qifu Wang.These supports are gratefully acknowledged.
文摘This paper presents an effective fiber angle optimization method for two and multi-layered variable stiffness composites.A gradient-based fiber angle optimization method is developed based on isogeometric analysis(IGA).Firstly,the element densities and fiber angles for two and multi-layered composites are synchronously optimized using an extended Bi-layered continuous fiber angle optimization method(XBi-CFAO).The densities and fiber angles in the base layer are attached to the control points.The structure response and sensitivity analysis are accomplished using the non-uniform rational B-spline(NURBS)based IGA.By the benefit of the B-spline space,this method is free from checkerboards,and no additional filtering is needed to smooth the sensitivity numbers.Then the curved fiber paths are generated using the streamline method and the discontinuous fiber paths are smoothed using a partitioned selection process.The proposed method in the paper can alleviate the phenomenon of fiber discontinuity,enhance information retention for the optimized fiber angles of the singular points and save calculating resources effectively.
基金supported by the State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China (Grant GZ1305)
文摘This paper presents a study on the concur- rent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new type of design variable. The new model is based on the assumptions that a structure is made of a material with the same microstructure, and the material may have a different orientation within the design domain of the structure. The homogenization theory is applied to link the material and structure scales. An additional post-processing technique is developed for modifying the obtained design to avoid local optima caused by the use of orientation angle variables. Numerical examples are presented to illustrate the viabil- ity and effectiveness of the proposed model. It is found that significant improvement in structural performance can be achieved by optimizing the orientation of microstructures in concurrent topology optimization of structures and materials.
文摘To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.
文摘AC / DC converter is a kind of devices applicable to reactive power compensation. Three parameters including losses, Total Harmonic Distortion (THD) and compensation capacity have important role in designing procedure that these parameters are affected by the firing angle. Consideration trade of between these parameters can cause be selected suitable firing angle for optimal working of the compensator. In this paper is defined an objective function which includes the above parameters. This objective function is optimized through appropriate weighting factor for any parameters and the optimal firing angle will be obtained. So, the mention parameters can be selected optimally.
基金National Natural Science Foundation of China (61174221)
文摘A formal analysis to footprint problem with effects of angle of attack (AOA) is presented. First a flexible and rapid standardized method for footprint generation is developed. Zero bank angle control strategy and the maximum crossrange method are used to obtain virtual target set; afterward, closed-loop bank angle guidance law is used to find footprint by solving closest approach problem for each element in virtual target set. Then based on quasi-equilibrium glide condition, the typical inequality reentry trajectory constraints are converted to angle of attack lower boundary constraint. Constrained by the lower boundary, an original and practical angle of attack parametric method is proposed. By using parametric angle of attack profile, optimization algorithm for angle of attack is designed and the impact of angle of attack to footprint is discussed. Simulations with different angle of attack profiles are presented to demonstrate the performance of the proposed footprint solution method and validity of optimal algorithm.