Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alter...Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.展开更多
Let SE denote the least-squares symmetric solution set of the matrix equation A×B = C, where A, B and C are given matrices of suitable size. To find the optimal approximate solution in the set SE to a given matri...Let SE denote the least-squares symmetric solution set of the matrix equation A×B = C, where A, B and C are given matrices of suitable size. To find the optimal approximate solution in the set SE to a given matrix, we give a new feasible method based on the projection theorem, the generalized SVD and the canonical correction decomposition.展开更多
文摘Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.
基金The work of this author was supported in part by Natural Science Foundation of Hunan Province (No. 03JJY6028).
文摘Let SE denote the least-squares symmetric solution set of the matrix equation A×B = C, where A, B and C are given matrices of suitable size. To find the optimal approximate solution in the set SE to a given matrix, we give a new feasible method based on the projection theorem, the generalized SVD and the canonical correction decomposition.