Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is...Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.展开更多
To improve the energy efficiency of a direct expansion air conditioning(DX A/C) system while guaranteeing occupancy comfort, a hierarchical controller for a DX A/C system with uncertain parameters is proposed. The con...To improve the energy efficiency of a direct expansion air conditioning(DX A/C) system while guaranteeing occupancy comfort, a hierarchical controller for a DX A/C system with uncertain parameters is proposed. The control strategy consists of an open loop optimization controller and a closed-loop guaranteed cost periodically intermittent-switch controller(GCPISC). The error dynamics system of the closed-loop control is modelled based on the GCPISC principle. The difference,compared to the previous DX A/C system control methods, is that the controller designed in this paper performs control at discrete times. For the ease of designing the controller, a series of matrix inequalities are derived to be the sufficient conditions of the lower-layer closed-loop GCPISC controller. In this way, the DX A/C system output is derived to follow the optimal references obtained through the upper-layer open loop controller in exponential time, and the energy efficiency of the system is improved. Moreover, a static optimization problem is addressed for obtaining an optimal GCPISC law to ensure a minimum upper bound on the DX A/C system performance considering energy efficiency and output tracking error. The advantages of the designed hierarchical controller for a DX A/C system with uncertain parameters are demonstrated through some simulation results.展开更多
This article is concerned with the modeling and control problems of the flexible spacecraft. First, the state observer is designed to estimate the vibration mode on the basis of free vibration models, Then, an optimal...This article is concerned with the modeling and control problems of the flexible spacecraft. First, the state observer is designed to estimate the vibration mode on the basis of free vibration models, Then, an optimal guaranteed cost controller is proposed to stabilize system attitude and damp the vibration of the flexible beam at the same time. Numerical simulation examples show the feasibility and validity of the proposed method.展开更多
基金the National Natural Science Foundation of China (60325311).
文摘Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.
基金supported by the National Natural Science Foundation of China(61773220,61876192,61907021)the National Natural Science Foundation of Hubei(ZRMS2019000752)+2 种基金the Fundamental Research Funds for the Central Universities(2662018QD057,CZT20022,CZT20020)Academic Team in Universities(KTZ20051)School Talent Funds(YZZ19004)。
文摘To improve the energy efficiency of a direct expansion air conditioning(DX A/C) system while guaranteeing occupancy comfort, a hierarchical controller for a DX A/C system with uncertain parameters is proposed. The control strategy consists of an open loop optimization controller and a closed-loop guaranteed cost periodically intermittent-switch controller(GCPISC). The error dynamics system of the closed-loop control is modelled based on the GCPISC principle. The difference,compared to the previous DX A/C system control methods, is that the controller designed in this paper performs control at discrete times. For the ease of designing the controller, a series of matrix inequalities are derived to be the sufficient conditions of the lower-layer closed-loop GCPISC controller. In this way, the DX A/C system output is derived to follow the optimal references obtained through the upper-layer open loop controller in exponential time, and the energy efficiency of the system is improved. Moreover, a static optimization problem is addressed for obtaining an optimal GCPISC law to ensure a minimum upper bound on the DX A/C system performance considering energy efficiency and output tracking error. The advantages of the designed hierarchical controller for a DX A/C system with uncertain parameters are demonstrated through some simulation results.
基金the National Natural Science Foundation of China (60574022)
文摘This article is concerned with the modeling and control problems of the flexible spacecraft. First, the state observer is designed to estimate the vibration mode on the basis of free vibration models, Then, an optimal guaranteed cost controller is proposed to stabilize system attitude and damp the vibration of the flexible beam at the same time. Numerical simulation examples show the feasibility and validity of the proposed method.