In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj...The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.展开更多
This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ...This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.展开更多
In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the us...In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.展开更多
This paper presents in the first place, the state of art relating to the methods to solve optimal power flows (OPF) and its application in electrical microgrids. Afterwards, a mathematical algorithm based on the gradi...This paper presents in the first place, the state of art relating to the methods to solve optimal power flows (OPF) and its application in electrical microgrids. Afterwards, a mathematical algorithm based on the gradient method is proposed for the application of OPF in a low power microgrid, in order to improve the voltages profiles and consequently reduce the active power losses. Finally, the proposed algorithm is implemented in a low power microgrid to demonstrate the effectiveness of the method.展开更多
In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, ...In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.展开更多
The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblem...The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PClPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.展开更多
Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated So...Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solving Voltage Stability Constrained-Optimal Power Flow (VSC-OPF). Base case generator power output, voltage magnitude of generator buses are taken as the control variables and maximum L-index of load buses is used to specify the voltage stability level of the system. Multi-Objective OPF, formulated as a multi-objective mixed integer nonlinear optimization problem, minimizes fuel cost and minimizes emission of gases, as well as improvement of voltage profile in the system. NSGA-II based OPF-case 1-Two objective-Min Fuel cost and Voltage stability index;case 2-Three objective-Min Fuel cost, Min Emission cost and Voltage stability index. The above method is tested on standard IEEE 30-bus test system and simulation results are done for base case and the two severe contingency cases and also on loaded conditions.展开更多
This paper addresses the problem of reducing CO<sub>2</sub> emissions by applying convex optimal power flow model to the combined economic and emission dispatch problem. The large amount of CO<sub>2&...This paper addresses the problem of reducing CO<sub>2</sub> emissions by applying convex optimal power flow model to the combined economic and emission dispatch problem. The large amount of CO<sub>2</sub> emissions in the power industry is a major source of global warming effect. An efficient and economic approach to reduce CO<sub>2</sub> emissions is to formulate the emission reduction problem as emission dispatch problem and combined with power system economic dispatch (ED). Because the traditional optimal power flow (OPF) model used by the economic dispatch is nonlinear and nonconvex, current nonlinear solvers are not able to find the global optimal solutions. In this paper, we use the convex optimal power flow model to formulate the combined economic and emission dispatch problem. The advantage of using convex power flow model is that global optimal solutions can be obtained by using mature industrial strength nonlinear solvers such as MOSEK. Numerical results of various IEEE power network test cases confirm the feasibility and advantage of convex combined economic and emission dispatch (CCEED).展开更多
This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or abs...This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The reduction of unbalance voltage and losses in the distribution systems is obtained by actions of reactive power control of the inverter. The TOPF is formulated by current balance equations and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems for different scenarios of solar irradiance and temperature, thus providing a detailed view of the impact of photovoltaic distributed generation.展开更多
Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, i...Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.展开更多
This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian Uni...This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.展开更多
Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, mini...Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.展开更多
Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvex...Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.展开更多
In the existing small-signal stability constrained optimal power flow(SSSC-OPF)algorithms,only the rightmost eigenvalue or eigenvalues that do not satisfy a given threshold,e.g.,damping ratio threshold and real-part t...In the existing small-signal stability constrained optimal power flow(SSSC-OPF)algorithms,only the rightmost eigenvalue or eigenvalues that do not satisfy a given threshold,e.g.,damping ratio threshold and real-part threshold of eigenvalue,are considered in the small-signal stability constraints.The effect of steady-state,i.e.,operating point,changes on eigenvalues is not fully taken into account.In this paper,the small-signal stability constraint that can fully reflect the eigenvalue change and system dynamic performance requirement is formed by analyzing the eigenvalue distribution on the complex plane.The small-signal stability constraint is embedded into the standard optimal power flow model for generation reschedul-ing.The simultaneous solution formula of the SSSC-OPF is established and solved by the quasi-Newton approach,while penalty factors corresponding to the eigenvalue constraints are determined by the stabilization degree of constrained eigenvalues.To improve the computation speed,a hybrid algorithm for eigenvalue computation in the optimization process is proposed,which includes variable selection for eigenvalue estimation and strategy selection for eigenvalue computation.The effectiveness of the proposed algorithm is tested and validated on the New England 10-machine 39-bus system and a modified practical 68-machine 2395-bus system.展开更多
To solve the optimal power flow(OPF)problem,reinforcement learning(RL)emerges as a promising new approach.However,the RL-OPF literature is strongly divided regarding the exact formulation of the OPF problem as an RL e...To solve the optimal power flow(OPF)problem,reinforcement learning(RL)emerges as a promising new approach.However,the RL-OPF literature is strongly divided regarding the exact formulation of the OPF problem as an RL environment.In this work,we collect and implement diverse environment design decisions from the literature regarding training data,observation space,episode definition,and reward function choice.In an experimental analysis,we show the significant impact of these environment design options on RL-OPF training performance.Further,we derive some first recommendations regarding the choice of these design decisions.The created environment framework is fully open-source and can serve as a benchmark for future research in the RL-OPF field.展开更多
In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the...In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the fields such as economic dispatch of power systems due to its strong selflearning and self-optimizing capabilities.However,existing economic scheduling methods based on RL ignore security risks that the agent may bring during exploration,which poses a risk of issuing instructions that threaten the safe operation of power system.Therefore,we propose an improved proximal policy optimization algorithm for sequential security-constrained optimal power flow(SCOPF)based on expert knowledge and safety layer to determine active power dispatch strategy,voltage optimization scheme of the units,and charging/discharging dispatch of energy storage systems.The expert experience is introduced to improve the ability to enforce constraints such as power balance in training process while guiding agent to effectively improve the utilization rate of renewable energy.Additionally,to avoid line overload,we add a safety layer at the end of the policy network by introducing transmission constraints to avoid dangerous actions and tackle sequential SCOPF problem.Simulation results on an improved IEEE 118-bus system verify the effectiveness of the proposed algorithm.展开更多
The application of a novel Particle Swarm Optimization (PSO) method called Fitness Distance Ratio PSO (FDR PSO) algorithm is described in this paper to determine the optimal power dispatch of the Independent Power Pro...The application of a novel Particle Swarm Optimization (PSO) method called Fitness Distance Ratio PSO (FDR PSO) algorithm is described in this paper to determine the optimal power dispatch of the Independent Power Producers (IPP) with linear ramp model and transient stability constraints of the power producers. Generally the power producers must respond quickly to the changes in load and wheeling transactions. Moreover, it becomes necessary for the power producers to reschedule their power generation beyond their power limits to meet vulnerable situations like credible contingency and increase in load conditions. During this process, the ramping cost is incurred if they violate their permissible elastic limits. In this paper, optimal production costs of the power producers are computed with stepwise and piecewise linear ramp rate limits. Transient stability limits of the power producers are also considered as addi-tional rotor angle inequality constraints while solving the Optimal Power Flow (OPF) problem. The proposed algo-rithm is demonstrated on practical 10 bus and 26 bus systems and the results are compared with other optimization methods.展开更多
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金Projects(61105067,61174164)supported by the National Natural Science Foundation of China
文摘The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness.
文摘This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.
文摘In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method.
文摘This paper presents in the first place, the state of art relating to the methods to solve optimal power flows (OPF) and its application in electrical microgrids. Afterwards, a mathematical algorithm based on the gradient method is proposed for the application of OPF in a low power microgrid, in order to improve the voltages profiles and consequently reduce the active power losses. Finally, the proposed algorithm is implemented in a low power microgrid to demonstrate the effectiveness of the method.
文摘In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.
基金National Natural Science Foundation of China(No.50595413)National Key Basic Research Program ("973" Program) (No.2004CB217904)
文摘The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PClPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.
文摘Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solving Voltage Stability Constrained-Optimal Power Flow (VSC-OPF). Base case generator power output, voltage magnitude of generator buses are taken as the control variables and maximum L-index of load buses is used to specify the voltage stability level of the system. Multi-Objective OPF, formulated as a multi-objective mixed integer nonlinear optimization problem, minimizes fuel cost and minimizes emission of gases, as well as improvement of voltage profile in the system. NSGA-II based OPF-case 1-Two objective-Min Fuel cost and Voltage stability index;case 2-Three objective-Min Fuel cost, Min Emission cost and Voltage stability index. The above method is tested on standard IEEE 30-bus test system and simulation results are done for base case and the two severe contingency cases and also on loaded conditions.
文摘This paper addresses the problem of reducing CO<sub>2</sub> emissions by applying convex optimal power flow model to the combined economic and emission dispatch problem. The large amount of CO<sub>2</sub> emissions in the power industry is a major source of global warming effect. An efficient and economic approach to reduce CO<sub>2</sub> emissions is to formulate the emission reduction problem as emission dispatch problem and combined with power system economic dispatch (ED). Because the traditional optimal power flow (OPF) model used by the economic dispatch is nonlinear and nonconvex, current nonlinear solvers are not able to find the global optimal solutions. In this paper, we use the convex optimal power flow model to formulate the combined economic and emission dispatch problem. The advantage of using convex power flow model is that global optimal solutions can be obtained by using mature industrial strength nonlinear solvers such as MOSEK. Numerical results of various IEEE power network test cases confirm the feasibility and advantage of convex combined economic and emission dispatch (CCEED).
文摘This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The reduction of unbalance voltage and losses in the distribution systems is obtained by actions of reactive power control of the inverter. The TOPF is formulated by current balance equations and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems for different scenarios of solar irradiance and temperature, thus providing a detailed view of the impact of photovoltaic distributed generation.
文摘Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.
文摘This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.
基金supported by China Armament Pre-research Foundation(Grant No. 51318010402)UK Engineering and Physical Science Research Council (EPSRC), and China Scholarship Council (Grant No.2010611054)
文摘Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.
基金supported by the National Natural Science Foundation of China under Grant 52177086the Fundamental Research Funds for the Central Universities under Grant 2023ZYGXZR063the Science and Technology Program of Guizhou Power Grid Coorperation under Grant GZKJXM20222386.
文摘Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.
基金supported by the National Natural Science Foundation of China(No.62203395)the Postdoctoral Research Project of Henan Province(No.202101011)the Key R&D and Promotion Project of Henan Province(No.222102220041).
文摘In the existing small-signal stability constrained optimal power flow(SSSC-OPF)algorithms,only the rightmost eigenvalue or eigenvalues that do not satisfy a given threshold,e.g.,damping ratio threshold and real-part threshold of eigenvalue,are considered in the small-signal stability constraints.The effect of steady-state,i.e.,operating point,changes on eigenvalues is not fully taken into account.In this paper,the small-signal stability constraint that can fully reflect the eigenvalue change and system dynamic performance requirement is formed by analyzing the eigenvalue distribution on the complex plane.The small-signal stability constraint is embedded into the standard optimal power flow model for generation reschedul-ing.The simultaneous solution formula of the SSSC-OPF is established and solved by the quasi-Newton approach,while penalty factors corresponding to the eigenvalue constraints are determined by the stabilization degree of constrained eigenvalues.To improve the computation speed,a hybrid algorithm for eigenvalue computation in the optimization process is proposed,which includes variable selection for eigenvalue estimation and strategy selection for eigenvalue computation.The effectiveness of the proposed algorithm is tested and validated on the New England 10-machine 39-bus system and a modified practical 68-machine 2395-bus system.
文摘To solve the optimal power flow(OPF)problem,reinforcement learning(RL)emerges as a promising new approach.However,the RL-OPF literature is strongly divided regarding the exact formulation of the OPF problem as an RL environment.In this work,we collect and implement diverse environment design decisions from the literature regarding training data,observation space,episode definition,and reward function choice.In an experimental analysis,we show the significant impact of these environment design options on RL-OPF training performance.Further,we derive some first recommendations regarding the choice of these design decisions.The created environment framework is fully open-source and can serve as a benchmark for future research in the RL-OPF field.
基金supported in part by National Natural Science Foundation of China(No.52077076)in part by the National Key R&D Plan(No.2021YFB2601502)。
文摘In recent years,reinforcement learning(RL)has emerged as a solution for model-free dynamic programming problem that cannot be effectively solved by traditional optimization methods.It has gradually been applied in the fields such as economic dispatch of power systems due to its strong selflearning and self-optimizing capabilities.However,existing economic scheduling methods based on RL ignore security risks that the agent may bring during exploration,which poses a risk of issuing instructions that threaten the safe operation of power system.Therefore,we propose an improved proximal policy optimization algorithm for sequential security-constrained optimal power flow(SCOPF)based on expert knowledge and safety layer to determine active power dispatch strategy,voltage optimization scheme of the units,and charging/discharging dispatch of energy storage systems.The expert experience is introduced to improve the ability to enforce constraints such as power balance in training process while guiding agent to effectively improve the utilization rate of renewable energy.Additionally,to avoid line overload,we add a safety layer at the end of the policy network by introducing transmission constraints to avoid dangerous actions and tackle sequential SCOPF problem.Simulation results on an improved IEEE 118-bus system verify the effectiveness of the proposed algorithm.
文摘The application of a novel Particle Swarm Optimization (PSO) method called Fitness Distance Ratio PSO (FDR PSO) algorithm is described in this paper to determine the optimal power dispatch of the Independent Power Producers (IPP) with linear ramp model and transient stability constraints of the power producers. Generally the power producers must respond quickly to the changes in load and wheeling transactions. Moreover, it becomes necessary for the power producers to reschedule their power generation beyond their power limits to meet vulnerable situations like credible contingency and increase in load conditions. During this process, the ramping cost is incurred if they violate their permissible elastic limits. In this paper, optimal production costs of the power producers are computed with stepwise and piecewise linear ramp rate limits. Transient stability limits of the power producers are also considered as addi-tional rotor angle inequality constraints while solving the Optimal Power Flow (OPF) problem. The proposed algo-rithm is demonstrated on practical 10 bus and 26 bus systems and the results are compared with other optimization methods.