Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the an...Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged.展开更多
Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure dete...Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure determination. The results of these characterizations along with the initial results of all thin film CdS/CdTe solar cells are presented in this paper展开更多
The current status of university computer teaching, taking fully into account the differences between students, competency-based education philosophy as a guide, this paper discusses the application of modular and hie...The current status of university computer teaching, taking fully into account the differences between students, competency-based education philosophy as a guide, this paper discusses the application of modular and hierarchical optimization problems in teaching computer courses in colleges and universities, and in-depth analyzes the basic content and implementation strategies of module level teaching.展开更多
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant...The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.展开更多
Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on ratione...Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on rationed phosphorous(P)fertilization.In this study,two multi-year field experiments were implemented from 2014-2019 under identical conditions.Two factors in a randomized complete block design were adopted in both experiments.In field experiment 1,the two factors included three planting patterns(mono-cropped wheat(MW),mono-cropped faba bean(MF),and wheat and faba bean intercropping(W//F))and four N application rates(N0,0 kg N ha^(-1);N1,90 and 45 kg N ha^(-1) for wheat and faba beans,respectively;N2,180 and 90 kg N ha^(-1) for wheat and faba beans,respectively;and N3,270 and 135 kg N ha^(-1) for wheat and faba beans,respectively).In field experiment 2,the two factors included three P application rates(P0,0 kg P_(2)O_(5) ha^(-1);P1,45 kg P_(2)O_(5) ha^(-1);and P2,90 kg P_(2)O_(5) ha^(-1))and the same three planting patterns(MW,MF,and W//F).The yield performances of inter-and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat(IW)and MW were estimated.The results revealed that intercropping favored wheat yield and was adverse to faba bean yield.Wheat yield increased by 18-26%,but faba bean yield decreased by 5-21% in W//F compared to MW and MF,respectively.The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio(LER)of 1.12.N and P fertilization benefited IW yield,but reduced intercropped faba bean(IF)yield.Nevertheless,the partial LER of wheat(pLER_(wheat))decreased with increasing N application rates,and the partial LER of faba bean(pLER_(faba bean))decreased with increasing P application rates.Thus,LER decreased as N input increased and tended to decline as P rates increased.IW maintained a similar yield as MW,even under reduced 40-50% N fertilizer and 30-40% P fertilizer conditions.The estimated optimum N application rates for IW and MW were 150 and 168 kg ha^(-1),respectively,and 63 and 62 kg ha^(-1) for P_(2)O_(5),respectively.In conclusion,W//F exhibited yield advantages due to stimulated IW yield,but the intercropping yield benefit decreased as N and P inputs increased.Thus,it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping.Based on the results,rates of 150 kg N ha^(-1) and 60 kg P_(2)O_(5) ha^(-1) are recommended for IW production in southwestern China and places with similar conditions.展开更多
In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of ...In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.展开更多
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
Surface engineering of magnesium alloys requires adequate strategies, processes and materials permitting corrosion protection. Liquid formulations containing corrosion inhibitors often are to be optimized according to...Surface engineering of magnesium alloys requires adequate strategies, processes and materials permitting corrosion protection. Liquid formulations containing corrosion inhibitors often are to be optimized according to the demands of the respective substrate and following the service conditions during its application. As an interdisciplinary approach, a combination of several techniques for instantly monitoring or elaborately analyzing the surface state of magnesium was accomplished in order to characterize the performance of new adsorbing sustainable amphiphilic polymers which recently were developed to facilitate a multi-metal corrosion protection approach. The application of established techniques like Contact Angle measurements and X-ray Photoelectron Spectroscopy investigations was supplemented by introducing related and yet faster online-capable and larger-scale techniques like Aerosol Wetting Test and Optically Stimulated Electron Emission. Moreover, an inexpensive setup was configured for scaling the inset and the extent of degradation processes which occur at local electrochemical circuits and lead to hydrogen bubble formation. Using these analytical tools, changes of the surface state of emeried AM50 samples were investigated. Even in contact with water, being a moderate corrosive medium, the online techniques facilitated detecting surface degradation of the unprotected magnesium alloy within some seconds. In contrast, following contact with a 1 weight% formulation of a polymeric corrosion inhibitor, surface monitoring indicated a delay of the onset of degradation processes by approximately two orders of magnitude in time. Mainly based on the spectroscopic investigations, the corrosion inhibiting effects of the investigated polymer are attributed to the adsorption of a primary polymer layer with a thickness of a few nanometers which occurs within some seconds. Immersion of magnesium for several hours brings up a protective film with around ten nanometers thickness.展开更多
This paper is devoted to studying a new topic:optimal Markovian couplings,mainly for time-continuous Markov processes.The study emphasizes the analysis of the coupling opera- tors rather than the processes.Some constr...This paper is devoted to studying a new topic:optimal Markovian couplings,mainly for time-continuous Markov processes.The study emphasizes the analysis of the coupling opera- tors rather than the processes.Some constructions of optimal Markovian couplings for Markov chains and diffusions are presented,which are often unexpected.Then,the results are applied to study the L^2-convergence for Markov chains and for a diffusion on compact manifold.The estimate of the convergent rate provided by this method can be sharp.展开更多
基金This work was supported by the Major Science and Technology Projects in Anhui Province,China(202003b06020021)the Natural Science Foundation of Anhui Province,China(2008085QC122)+1 种基金the Postgraduate Quality Engineering Project in Anhui Province,China(2022cxcysj0066)the Special Fund for Anhui Agriculture Research System,China.
文摘Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged.
文摘Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure determination. The results of these characterizations along with the initial results of all thin film CdS/CdTe solar cells are presented in this paper
文摘The current status of university computer teaching, taking fully into account the differences between students, competency-based education philosophy as a guide, this paper discusses the application of modular and hierarchical optimization problems in teaching computer courses in colleges and universities, and in-depth analyzes the basic content and implementation strategies of module level teaching.
基金supported in part by the National Research Foundation of Korea (NRF-2021H1D3A2A01082705).
文摘The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.
基金supported by the National Key R&D Program of China(2017YFD0200200 and 2017YFD0200207)the National Natural Science Foundation of China(31760611,32060718 and 31560581)the Yunnan Agricultural Foundation Joint Project,China(2018FG001-071)。
文摘Yield performance in cereal and legume intercropping is related to nutrient management,however,the yield response of companion crops to nitrogen(N)input is inconclusive and only limited efforts have focused on rationed phosphorous(P)fertilization.In this study,two multi-year field experiments were implemented from 2014-2019 under identical conditions.Two factors in a randomized complete block design were adopted in both experiments.In field experiment 1,the two factors included three planting patterns(mono-cropped wheat(MW),mono-cropped faba bean(MF),and wheat and faba bean intercropping(W//F))and four N application rates(N0,0 kg N ha^(-1);N1,90 and 45 kg N ha^(-1) for wheat and faba beans,respectively;N2,180 and 90 kg N ha^(-1) for wheat and faba beans,respectively;and N3,270 and 135 kg N ha^(-1) for wheat and faba beans,respectively).In field experiment 2,the two factors included three P application rates(P0,0 kg P_(2)O_(5) ha^(-1);P1,45 kg P_(2)O_(5) ha^(-1);and P2,90 kg P_(2)O_(5) ha^(-1))and the same three planting patterns(MW,MF,and W//F).The yield performances of inter-and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat(IW)and MW were estimated.The results revealed that intercropping favored wheat yield and was adverse to faba bean yield.Wheat yield increased by 18-26%,but faba bean yield decreased by 5-21% in W//F compared to MW and MF,respectively.The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio(LER)of 1.12.N and P fertilization benefited IW yield,but reduced intercropped faba bean(IF)yield.Nevertheless,the partial LER of wheat(pLER_(wheat))decreased with increasing N application rates,and the partial LER of faba bean(pLER_(faba bean))decreased with increasing P application rates.Thus,LER decreased as N input increased and tended to decline as P rates increased.IW maintained a similar yield as MW,even under reduced 40-50% N fertilizer and 30-40% P fertilizer conditions.The estimated optimum N application rates for IW and MW were 150 and 168 kg ha^(-1),respectively,and 63 and 62 kg ha^(-1) for P_(2)O_(5),respectively.In conclusion,W//F exhibited yield advantages due to stimulated IW yield,but the intercropping yield benefit decreased as N and P inputs increased.Thus,it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping.Based on the results,rates of 150 kg N ha^(-1) and 60 kg P_(2)O_(5) ha^(-1) are recommended for IW production in southwestern China and places with similar conditions.
文摘In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.
基金Borders(Ciencia sem Fronteiras,proc.L.M.G.Goncalves 88888.021780/2013-00,L.C.Sanchez 88888.021800/2013-00 and S.Stamboroski 88888.020610/2013-00)Coordination of Improvement of Higher Education Personnel(CAPES-Brazil)and Consejo Nacional para Investigaciones Científicas y Tecnologicas de Costa Rica.(CONICIT)for the funding+1 种基金the German Federal Ministry of Economics and Technology(BMWi)under the ZIM programme(Zentrales Innovationsprogramm Mittelstand-ZIM)the“KABA”project(funding reference KF2139502 HA9)carried out with Straetmans High TAC GmbH
文摘Surface engineering of magnesium alloys requires adequate strategies, processes and materials permitting corrosion protection. Liquid formulations containing corrosion inhibitors often are to be optimized according to the demands of the respective substrate and following the service conditions during its application. As an interdisciplinary approach, a combination of several techniques for instantly monitoring or elaborately analyzing the surface state of magnesium was accomplished in order to characterize the performance of new adsorbing sustainable amphiphilic polymers which recently were developed to facilitate a multi-metal corrosion protection approach. The application of established techniques like Contact Angle measurements and X-ray Photoelectron Spectroscopy investigations was supplemented by introducing related and yet faster online-capable and larger-scale techniques like Aerosol Wetting Test and Optically Stimulated Electron Emission. Moreover, an inexpensive setup was configured for scaling the inset and the extent of degradation processes which occur at local electrochemical circuits and lead to hydrogen bubble formation. Using these analytical tools, changes of the surface state of emeried AM50 samples were investigated. Even in contact with water, being a moderate corrosive medium, the online techniques facilitated detecting surface degradation of the unprotected magnesium alloy within some seconds. In contrast, following contact with a 1 weight% formulation of a polymeric corrosion inhibitor, surface monitoring indicated a delay of the onset of degradation processes by approximately two orders of magnitude in time. Mainly based on the spectroscopic investigations, the corrosion inhibiting effects of the investigated polymer are attributed to the adsorption of a primary polymer layer with a thickness of a few nanometers which occurs within some seconds. Immersion of magnesium for several hours brings up a protective film with around ten nanometers thickness.
基金Supported in part by NSFC,the State Education Commission of China,the NSERC operating grant of D.A.Dawson and Centro Vito Volterra.
文摘This paper is devoted to studying a new topic:optimal Markovian couplings,mainly for time-continuous Markov processes.The study emphasizes the analysis of the coupling opera- tors rather than the processes.Some constructions of optimal Markovian couplings for Markov chains and diffusions are presented,which are often unexpected.Then,the results are applied to study the L^2-convergence for Markov chains and for a diffusion on compact manifold.The estimate of the convergent rate provided by this method can be sharp.