An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several...An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several specified output deflections. The compliance and stiffness of the system are expressed by the mutual potential energy and strain energy, respectively, which can be controlled by a multi-critaria objective function. Secondly, based on the optimality criteria method, a model solution algorithm is presented. Finally, a numerical example is presented to show the validity oftbe presented technique. The optimal topology ofa 4 inputs and 4 outputs compliant mechanism is obtained by using the method, and the corresponding micro-positioning stage system is further designed.展开更多
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the...Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.展开更多
With the deepening of electric power market reform in China,the monopoly edge of the state-owned electric power enterprises will lose.On the basis of the existing post performance salary mechanism,Chinese power enterp...With the deepening of electric power market reform in China,the monopoly edge of the state-owned electric power enterprises will lose.On the basis of the existing post performance salary mechanism,Chinese power enterprises need to optimize the incentive mechanism of R&D staff,to arouse the R&D staff's enthusiasm and creativity,to adapt to the new market competition and further improve market value.Whilst the incentive mechanism optimizing processing needs to consider not only the changing market environment but also the personal and working characteristics of R&D staff.This paper summarizes the characteristics of the current Chinese power enterprises' R&D staff:staff's theory quality is high,but insensitive to the market;they are confronted with heavy workload and diversified job choices;managers can observe their behavior choices or not;besides,the process of R&D is complex and the market reactions of R&D achievements are uncertain.Based on the premise of the above features,two incentive models are established in this paper from the point of view of enterprise managers.One is for the situation when staff's behavior choices can be observed;the other is for the situation when staff's behavior choices cannot be observed.Through solving the model,we analyze the optimization path of electric power enterprises R&D staff incentive mechanism under these conditions:(1) when staff's behavior choices can be observed,managers can pay more to the R&D staff who develop products with higher output value,in order to encourage them to work harder.(2) when staff's behavior choices cannot be observed,managers should take reasonable strategies according to the different situations:a.when R&D staff incentive totally depend on the market value of the R&D achievements,managers should allocate workload rationally according to their different technical levels;b.when the market reactions of R&D results become more precarious,managers need to reduce the incentive intensity which based on the market value and raise their fixed salary level;c.when R&D staff become more risk averse,managers should reduce the incentive intensity which based on the market value and raise their fixed salary level;on the contrary,managers should improve the incentive intensity and reduce the fixed salary level.展开更多
Researches on forging manipulator have enormous influence on the development of the forging industry and national economy.Clamp device and lifting mechanism are the core parts of forging manipulator,and have been stud...Researches on forging manipulator have enormous influence on the development of the forging industry and national economy.Clamp device and lifting mechanism are the core parts of forging manipulator,and have been studied for longer time.However,the optimization and mechanical accuracy reliability of them are less analyzed.Based on General Function(G_F)set and parallel mechanism theory,proper configuration of 10t forging manipulator is selected firstly.A new type of forging manipulator driven by cylinders is proposed.After solved mechanical analysis of manipulator's core mechanisms,expressions of force of cylinders are carried out.In order to achieve smaller force afforded by cylinders and better mechanical characteristics,some particular sizes of core mechanisms are optimized intuitively through the combined use of the genetic algorithms(GA)and GUI interface in MATLAB.Comparing with the original mechanisms,optimized clamp saves at least 8 percent efforts and optimized lifting mechanism 20 percent under maximum working condition.Finally,considering the existed manufacture error of components,mechanical accuracy reliability of optimized clamp,lifting mechanism and whole manipulator are demonstrated respectively based on fuzzy reliability theory.Obtained results show that the accuracy reliability of optimized clamp is bigger than 0.991 and that of optimized lifting mechanism is 0.995.To the whole manipulator under maximum working condition,that value exceeds 0.986 4,which means that optimized manipulator has high motion accuracy and is reliable.A new intuitive method is created to optimize forging manipulator sizes efficiently and more practical theory is utilized to analyze mechanical accuracy reliability of forging manipulator precisely.展开更多
For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformati...For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.展开更多
The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal ...The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.展开更多
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) is the largest and most sensitive single-dish radio telescope in the world and has made many important scientific achievements in a few years. Given the ...The Five-hundred-meter Aperture Spherical radio Telescope(FAST) is the largest and most sensitive single-dish radio telescope in the world and has made many important scientific achievements in a few years. Given the enormous scientific research potential of the Milky Way center, it is necessary to enhance the observation zenith angle as close to the Milky Way center as possible. In this regard, a new mechanism for the feed cabin is proposed with cables and sliders, which is lighter in weight and larger in the workspace. This paper will introduce this new feed cabin and the whole feed support system and establish their mechanical models to optimize the relevant control parameters, making FAST achieve an observation zenith angle of at least 50°with satisfying the required constraints. It indicates that the new mechanism designed by the FAST team can be used for the FAST upgrade and the future FAST array project.展开更多
The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its mult...The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization(MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations,and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.展开更多
In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate...In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.展开更多
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb...Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w ear...The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.展开更多
Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel me...Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel mechanism was designed.A“beak-shaped”trajectory was designed for integrated transplanting requirements,and meantime,either the posture requirements of transplanting claw were determined.Based on the transplanting trajectory of the mechanism,a corresponding mathematical model for solving the link parameters was established,and then the five-bar mechanism was divided into two bar groups,optimization was conducted in two steps based on genetic algorithm and NSGA-II algorithm.Consequently,the optimal solution of the hybrid-driven five-bar parallel mechanism for flower seedling transplanting was obtained.Compared with similar designs,the trajectory displacement of the proposed mechanism is larger in the condition of smaller link size,which indicates that the mechanism can effectively decrease the machine size.The real-time controllable motor angular acceleration fluctuation is smaller and the commutation times are less,which has the advantage of reducing the difficulty of the mechanism control system.Subsequently,the correctness of the design method is verified by kinematics simulation.Finally,the synchronous linkage motion control methods of the two motors were designed,a transplanting experiment of the prototype was carried out,the picking success rate had reached 90%-93.4%and transplanting success rate was 80.5%-86.9%during experiment,which showed that the integrated operation of picking and planting flower seedlings can be realized by the proposed mechanism.展开更多
An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber rein...An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.展开更多
In order to control the CaO-Al;O;-SiO;-MgO system inclusions in 50 CrVA spring steel in a lower melting temperature region,high temperature equilibrium experiments between steel and slag were performed in the laborato...In order to control the CaO-Al;O;-SiO;-MgO system inclusions in 50 CrVA spring steel in a lower melting temperature region,high temperature equilibrium experiments between steel and slag were performed in the laboratory,under the conditions of the initial slag basicity within 3-7and the content of Al;O;between 18-35mass%,to investigate the formation and evolution of this type of inclusion.The results indicate that the total oxygen content in the steel decreases with the increase of slag basicity and the decrease of Al;O;content in slags,and CaO-Al;O;-SiO2-MgO inclusions tend to deviate from the low melting point region with the increase of Al;O;content in slags.The most favorable composition for the refining slag is composed of 51-56mass% CaO,9-13mass% SiO;,20-25mass% Al;O;and 6mass% MgO.In this case,the inclusions in 50 CrVA spring steel are mostly in the low melting point regions,in which their plasticities are expected to improve during steel rolling.The MgO-based inclusions were observed in the steel matrix and the formation mechanism was theoretically and schematically revealed.It is also found that adding around 11mass% of MgO into the refining slags is beneficial to reducing the refractory corrosion.Further work should be carried out focusing on the evolution rates of MgO-based inclusions.展开更多
A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A...A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.展开更多
The end-effector is an important part of the broccoli harvesting robot.Aiming at the physical characteristics of a large broccoli head and thick stem,a spherical cutting tool broccoli harvesting end-effector was desig...The end-effector is an important part of the broccoli harvesting robot.Aiming at the physical characteristics of a large broccoli head and thick stem,a spherical cutting tool broccoli harvesting end-effector was designed in this study.First,the physical characteristics of broccoli were tested,and physical parameters such as the broccoli head diameter and stem diameter of broccoli were measured.The maximum cutting force of broccoli stems under different cutting angles was tested.Second,according to the physical characteristics and harvesting process of broccoli,the end-effector was designed,and the mathematical model of kinematics and dynamics was established.Based on the results of dynamic analysis,the end-effector rod was optimized,and the unilateral width of the slider was 40 mm,the length of the connecting rod was 120 mm,and the length of the crank was 42 mm.The mechanism needed an external driving force of 140.54 N to cut the broccoli stem.Therefore,a 32 mm cylinder with a load rate of 50%was selected as the power source.Finally,the feasibility of the broccoli harvesting end-effector was verified by the harvesting test.Experiments showed that the overall harvesting success rate of the end-effector is 93.3%,and the smoothness rate of the stem section is 83.3%.The harvesting performance of the broccoli end-effector was verified.This lays a foundation for agricultural robots to harvest broccoli.展开更多
Scientific innovation system is the backbone and engine of economic development and social progress as well as the foundation and backup of comprehensive national strengths and international competitiveness. Factors d...Scientific innovation system is the backbone and engine of economic development and social progress as well as the foundation and backup of comprehensive national strengths and international competitiveness. Factors determining scientific innovation capacity mainly include the forming of an environment for innovation, the capital supply for innovation, innovation performances, innovation diffusivity, etc. The present paper is mainly studying on the capital supply for forestry scientific innovation and analyzing the capital supply capacity for forestry scientific innovation through the forming of scientific innovation capital, the effective supply of scientific innovation capital, the optimization mechanisms to promote the effective capital supply, etc.展开更多
This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the matin...This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the mating characteristics of snakes to find the optimal solution.SO has a simple structure and offers a delicate balance between exploitation and exploration.However,it also has some shortcomings to be improved.The proposed BEESO consequently aims to lighten the issues of lack of population diversity,convergence slowness,and the tendency to be stuck in local optima in SO.The presentation of Bi-Directional Search(BDS)is to approach the global optimal value along the direction guided by the best and the worst individuals,which makes the convergence speed faster.The increase in population diversity in BEESO benefits from Modified Evolutionary Population Dynamics(MEPD),and the replacement of poorer quality individuals improves population quality.The Elite Opposition-Based Learning(EOBL)provides improved local exploitation ability of BEESO by utilizing solid solutions with good performance.The performance of BEESO is illustrated by comparing its experimental results with several algorithms on benchmark functions and engineering designs.Additionally,the results of the experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon rank sum tests.The findings show that these introduced strategies provide some improvements in the performance of SO,and the accuracy and stability of the optimization results provided by the proposed BEESO are competitive among all algorithms.To conclude,the proposed BEESO offers a good alternative to solving optimization issues.展开更多
基金This project is supported by National Natural Science Foundation of China (No. 50375051)Provincial Natural Science Foundation of Guangdong, China (No. 05006494)+2 种基金Guang-dong Province Technology Project, China (No. 2006A10401004)Guangzhou Municipal Technology Project, China (No. 053J208001)Teaching and Research Award Program for Outstanding Young Teacher in Higher Educa-tion Institutions of Ministry of Education of China
文摘An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several specified output deflections. The compliance and stiffness of the system are expressed by the mutual potential energy and strain energy, respectively, which can be controlled by a multi-critaria objective function. Secondly, based on the optimality criteria method, a model solution algorithm is presented. Finally, a numerical example is presented to show the validity oftbe presented technique. The optimal topology ofa 4 inputs and 4 outputs compliant mechanism is obtained by using the method, and the corresponding micro-positioning stage system is further designed.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA11A223)
文摘Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission.
基金supported by 2016 annual North China Electric Power University undergraduate innovative training program research project(Grant No.20162183)
文摘With the deepening of electric power market reform in China,the monopoly edge of the state-owned electric power enterprises will lose.On the basis of the existing post performance salary mechanism,Chinese power enterprises need to optimize the incentive mechanism of R&D staff,to arouse the R&D staff's enthusiasm and creativity,to adapt to the new market competition and further improve market value.Whilst the incentive mechanism optimizing processing needs to consider not only the changing market environment but also the personal and working characteristics of R&D staff.This paper summarizes the characteristics of the current Chinese power enterprises' R&D staff:staff's theory quality is high,but insensitive to the market;they are confronted with heavy workload and diversified job choices;managers can observe their behavior choices or not;besides,the process of R&D is complex and the market reactions of R&D achievements are uncertain.Based on the premise of the above features,two incentive models are established in this paper from the point of view of enterprise managers.One is for the situation when staff's behavior choices can be observed;the other is for the situation when staff's behavior choices cannot be observed.Through solving the model,we analyze the optimization path of electric power enterprises R&D staff incentive mechanism under these conditions:(1) when staff's behavior choices can be observed,managers can pay more to the R&D staff who develop products with higher output value,in order to encourage them to work harder.(2) when staff's behavior choices cannot be observed,managers should take reasonable strategies according to the different situations:a.when R&D staff incentive totally depend on the market value of the R&D achievements,managers should allocate workload rationally according to their different technical levels;b.when the market reactions of R&D results become more precarious,managers need to reduce the incentive intensity which based on the market value and raise their fixed salary level;c.when R&D staff become more risk averse,managers should reduce the incentive intensity which based on the market value and raise their fixed salary level;on the contrary,managers should improve the incentive intensity and reduce the fixed salary level.
基金Supported by Special Fund of Jiangsu Province for the Transformation of Scientific & Technological Achievements,China(Grant No.BA2012110)
文摘Researches on forging manipulator have enormous influence on the development of the forging industry and national economy.Clamp device and lifting mechanism are the core parts of forging manipulator,and have been studied for longer time.However,the optimization and mechanical accuracy reliability of them are less analyzed.Based on General Function(G_F)set and parallel mechanism theory,proper configuration of 10t forging manipulator is selected firstly.A new type of forging manipulator driven by cylinders is proposed.After solved mechanical analysis of manipulator's core mechanisms,expressions of force of cylinders are carried out.In order to achieve smaller force afforded by cylinders and better mechanical characteristics,some particular sizes of core mechanisms are optimized intuitively through the combined use of the genetic algorithms(GA)and GUI interface in MATLAB.Comparing with the original mechanisms,optimized clamp saves at least 8 percent efforts and optimized lifting mechanism 20 percent under maximum working condition.Finally,considering the existed manufacture error of components,mechanical accuracy reliability of optimized clamp,lifting mechanism and whole manipulator are demonstrated respectively based on fuzzy reliability theory.Obtained results show that the accuracy reliability of optimized clamp is bigger than 0.991 and that of optimized lifting mechanism is 0.995.To the whole manipulator under maximum working condition,that value exceeds 0.986 4,which means that optimized manipulator has high motion accuracy and is reliable.A new intuitive method is created to optimize forging manipulator sizes efficiently and more practical theory is utilized to analyze mechanical accuracy reliability of forging manipulator precisely.
基金financially supported by the National Natural Science Foundation of China (Nos. 51474188, 51074140 and 51310105020)the Natural Science Foundation of Hebei Province (No. E2014203012)the Program for Taihang Scholars
文摘For a soft rock tunnel under high stress in jointed and swell soft rock (HJS), two construction schemes pilot-tunneling enlarging excavation and step-by-step excavation were optimized using FLAC20, and the deformation effects of the two construction schemes were verified by field tests. Based on engineer- ing geological investigation and mechanical analysis of large deformations, the complex deformation mechanisms of stress expansion and structural deformation of the soft rock tunnel were confirmed, and support countermeasures from the complex deformation mechanism converted to a single type were proposed, and the support parameters were optimized by field tests. These technologies were proved by engineering practice, which produced significant technical and economic benefits.
文摘The relationship between engine mechanics and thermo-dynamics has been investigated by means of numerical simulation.The inherent mismatching between the mechanical behaviors and the thermodynamic process in internal combustion engine is identified,which is believed to be one of the important limiting factors of energy efficiency for conventional engines available in the current market.An approach for engine efficiency improvement through optimal matching between mechanics and thermodynamics(OMBMT)is proposed.An ideal matching model is defined and the conflicts due to the constraints among the mapping strokes in a 4-stroke engine are analyzed.A novel mechanical model is built for approaching optimal matching among all 4 individual strokes in a 4-stroke spark-ignition engine,which is composed of non-circular gears(NCG)and integrated with conventional slider crank engine mechanism.By means of digital mechanical model and numerical simulation,the matching gains among all 4 strokes are defined and calculated for quantifying the NCG engine efficiency improvement by comparing with a baseline engine.The potentials with the OMBMT implemented and the enhancements made by NCG mechanism for engines in terms of overall engine efficiency are reported.Based on the results achieved,it is recommended that the feasibility studies and the experimental validations should be conducted to verify the engine matching concept and effectiveness of the NCG mechanism engine model proposed,and the engine performance and NCG design parameters should be further optimized.
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
基金supported by the National Natural Science Foundation of China(Grant No.11973062)the Youth Innovation Promotion Association CAS(Grant No.Y2021025)+1 种基金the Cultivation Project for FAST Scientific Payoff and Research Achievement of Center for Astronomical Mega-Science,CASOpen Project Program of the Key Laboratory of FAST,National Astronomical Observatories,Chinese Academy of Sciences。
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST) is the largest and most sensitive single-dish radio telescope in the world and has made many important scientific achievements in a few years. Given the enormous scientific research potential of the Milky Way center, it is necessary to enhance the observation zenith angle as close to the Milky Way center as possible. In this regard, a new mechanism for the feed cabin is proposed with cables and sliders, which is lighter in weight and larger in the workspace. This paper will introduce this new feed cabin and the whole feed support system and establish their mechanical models to optimize the relevant control parameters, making FAST achieve an observation zenith angle of at least 50°with satisfying the required constraints. It indicates that the new mechanism designed by the FAST team can be used for the FAST upgrade and the future FAST array project.
基金the fundamental support of the National Natural Science Foundation of China (Nos. 51105013, 51125020)the Beijing Natural Science Foundation of China (No. 3133042)the fundamental support provided by the China Scholarship Council and the State Key Laboratory of Robotics and System (HIT)
文摘The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization(MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations,and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.
文摘In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.
文摘Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
文摘The technique of cutting slabstone with stone-sawi ng machine is analyzed completely. A new kind of cutting movement trajectory is gi ven whose actual cutting efficiency is near to 100%. It can reduce the energy w earing greatly, and the surface quality of the product is improved to the utmost extent. The design mechanism of the optimal cutting movement trajectory system structure is analyzed incisively. At the same time, the principle of the complex movement of horizontal movement and swing is researched. The optimal design scheme of th e cutting movement trajectory system structure is set up. The choice method to g et the superior value of the movement system structure is found. The mathematics function formula is established which exhibits the relationship between the par ameter of the complex movement structure and that of the system movement structu re. By the formula, the precision value of the offset can be figured out. The r ule is adapted to different types of energy-saving stone-sawing machines. The complex movement structure of horizontal movement and swing is designed to f ulfill the cutting movement. It can make the saw frame move up with the hanging pod deviating from the vertical direction. At the same time, the saw frame have a down-movement. Then the sum of the two movements is near to zero, and the saw blade and the stone can keep in touch during the whole horizontal cutting. The result is that the actual cutting efficiency is 100%. Also, when the hanging pod moves to the limited position, the saw frame can keep the original inertia, and continue to swing up. It makes the back-cutting have high energy-storing. The optimal design of the eccentricity balance wheel is done. The mathematics fo rmula for expressing the movement system structure is deduced. The calculation m ethod and formula is set up which is used to get the value of important componen ts such as offset. The choice method and formula of elasticity distortion coeffi cient is set up when the saw frame moves smoothly. It is concluded that the offs et is the key dimension to actualize the optimal cutting movement trajectory. The resolving of the technical problems discussed above offers a theoretic and technical basis for optimal design of energy-saving stone-sawing machines.
基金The research work was financially supported by the National Natural Science Foundation of China(Grant No.51775512,51975536)Key research projects of Zhejiang Province(Grant No.2018C02046)+2 种基金Project funded by China Postdoctoral Science FoundationBasic public welfare research projects of Zhejiang Province(Grant No.LGN19E050002,LGN20E050006)Basic Scientific Research Foundation of Zhejiang Sci-Tech University.
文摘Aiming at decreasing the component complexity and cost of flower transplanting machine,an integrated transplanting method for picking and planting flower seedlings was proposed,and a hybrid-driven five-bar parallel mechanism was designed.A“beak-shaped”trajectory was designed for integrated transplanting requirements,and meantime,either the posture requirements of transplanting claw were determined.Based on the transplanting trajectory of the mechanism,a corresponding mathematical model for solving the link parameters was established,and then the five-bar mechanism was divided into two bar groups,optimization was conducted in two steps based on genetic algorithm and NSGA-II algorithm.Consequently,the optimal solution of the hybrid-driven five-bar parallel mechanism for flower seedling transplanting was obtained.Compared with similar designs,the trajectory displacement of the proposed mechanism is larger in the condition of smaller link size,which indicates that the mechanism can effectively decrease the machine size.The real-time controllable motor angular acceleration fluctuation is smaller and the commutation times are less,which has the advantage of reducing the difficulty of the mechanism control system.Subsequently,the correctness of the design method is verified by kinematics simulation.Finally,the synchronous linkage motion control methods of the two motors were designed,a transplanting experiment of the prototype was carried out,the picking success rate had reached 90%-93.4%and transplanting success rate was 80.5%-86.9%during experiment,which showed that the integrated operation of picking and planting flower seedlings can be realized by the proposed mechanism.
基金co-supported by the National Natural Science Foundation of China (No. 51375383)Graduate Starting Seed Fund of Northwestern Polytechnical University of China (No. Z2014110)
文摘An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.
基金support of the funds by the National Key Research and Development Program of China(No.2017YFB0304001)
文摘In order to control the CaO-Al;O;-SiO;-MgO system inclusions in 50 CrVA spring steel in a lower melting temperature region,high temperature equilibrium experiments between steel and slag were performed in the laboratory,under the conditions of the initial slag basicity within 3-7and the content of Al;O;between 18-35mass%,to investigate the formation and evolution of this type of inclusion.The results indicate that the total oxygen content in the steel decreases with the increase of slag basicity and the decrease of Al;O;content in slags,and CaO-Al;O;-SiO2-MgO inclusions tend to deviate from the low melting point region with the increase of Al;O;content in slags.The most favorable composition for the refining slag is composed of 51-56mass% CaO,9-13mass% SiO;,20-25mass% Al;O;and 6mass% MgO.In this case,the inclusions in 50 CrVA spring steel are mostly in the low melting point regions,in which their plasticities are expected to improve during steel rolling.The MgO-based inclusions were observed in the steel matrix and the formation mechanism was theoretically and schematically revealed.It is also found that adding around 11mass% of MgO into the refining slags is beneficial to reducing the refractory corrosion.Further work should be carried out focusing on the evolution rates of MgO-based inclusions.
基金supported by the National Natural Science Foundation of China (Grant No. 11032002 and 91016013)the program for New Century Excellent Talents in University+1 种基金National Basic Research Program of China (Grant No. 2010CB832706)the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No. ZDKT10-03a)
文摘A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.
基金the Key Research Projects of Zhejiang Province(Grant No.2022C02042,2022C02002)the National Natural Science Foundation of China(Grant No.32071909)+1 种基金the Shanghai Science and Technology Agricultural Development Project 2021(No.4-1)the General Project of Agriculture and Social Development in Hangzhou(Grant No.202203B08,20201203B92)。
文摘The end-effector is an important part of the broccoli harvesting robot.Aiming at the physical characteristics of a large broccoli head and thick stem,a spherical cutting tool broccoli harvesting end-effector was designed in this study.First,the physical characteristics of broccoli were tested,and physical parameters such as the broccoli head diameter and stem diameter of broccoli were measured.The maximum cutting force of broccoli stems under different cutting angles was tested.Second,according to the physical characteristics and harvesting process of broccoli,the end-effector was designed,and the mathematical model of kinematics and dynamics was established.Based on the results of dynamic analysis,the end-effector rod was optimized,and the unilateral width of the slider was 40 mm,the length of the connecting rod was 120 mm,and the length of the crank was 42 mm.The mechanism needed an external driving force of 140.54 N to cut the broccoli stem.Therefore,a 32 mm cylinder with a load rate of 50%was selected as the power source.Finally,the feasibility of the broccoli harvesting end-effector was verified by the harvesting test.Experiments showed that the overall harvesting success rate of the end-effector is 93.3%,and the smoothness rate of the stem section is 83.3%.The harvesting performance of the broccoli end-effector was verified.This lays a foundation for agricultural robots to harvest broccoli.
文摘Scientific innovation system is the backbone and engine of economic development and social progress as well as the foundation and backup of comprehensive national strengths and international competitiveness. Factors determining scientific innovation capacity mainly include the forming of an environment for innovation, the capital supply for innovation, innovation performances, innovation diffusivity, etc. The present paper is mainly studying on the capital supply for forestry scientific innovation and analyzing the capital supply capacity for forestry scientific innovation through the forming of scientific innovation capital, the effective supply of scientific innovation capital, the optimization mechanisms to promote the effective capital supply, etc.
基金supported by the National Natural Science Foundation of China (Grant No.51875454).
文摘This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the mating characteristics of snakes to find the optimal solution.SO has a simple structure and offers a delicate balance between exploitation and exploration.However,it also has some shortcomings to be improved.The proposed BEESO consequently aims to lighten the issues of lack of population diversity,convergence slowness,and the tendency to be stuck in local optima in SO.The presentation of Bi-Directional Search(BDS)is to approach the global optimal value along the direction guided by the best and the worst individuals,which makes the convergence speed faster.The increase in population diversity in BEESO benefits from Modified Evolutionary Population Dynamics(MEPD),and the replacement of poorer quality individuals improves population quality.The Elite Opposition-Based Learning(EOBL)provides improved local exploitation ability of BEESO by utilizing solid solutions with good performance.The performance of BEESO is illustrated by comparing its experimental results with several algorithms on benchmark functions and engineering designs.Additionally,the results of the experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon rank sum tests.The findings show that these introduced strategies provide some improvements in the performance of SO,and the accuracy and stability of the optimization results provided by the proposed BEESO are competitive among all algorithms.To conclude,the proposed BEESO offers a good alternative to solving optimization issues.