As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its i...In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.展开更多
Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature...Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving.展开更多
This work presents a procedure to optimize the molecular geometry at the Hartree-Fock level, based on a global opti-mization method—the Generalized Simulated Annealing. The main characteristic of this methodology is ...This work presents a procedure to optimize the molecular geometry at the Hartree-Fock level, based on a global opti-mization method—the Generalized Simulated Annealing. The main characteristic of this methodology is that, at least in principle, it enables the mapping of the energy hypersurface as to guarantee the achievement of the absolute minimum. This method does not use expansions of the energy, nor of its derivates, in terms of the conformation variables. Distinctly, it performs a direct optimization of the total Hartree-Fock energy through a stochastic strategy. The algorithm was tested by determining the Hartree-Fock ground state and optimum geometries of the H2, LiH, BH, Li2, CH+, OH?, FH, CO, CH, NH, OH and O2 systems. The convergence of our algorithm is totally independent of the initial point and do not require any previous specification of the orbital occupancies.展开更多
The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive obj...The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity.展开更多
To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simula...To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simulated annealing. Meanwhile, a three-dimensional mathematical model of aluminum holding furnace linings was developed and integrated with user-defined heat load distribution regime model. The optimal combination was as follows: side wall with 80 mm alumino-silicate fiber felts, 232 mm diatomite brick and 116 mm chamotte brick; top wall with 50 mm clay castables, 110 mm alumino-silicate fiber felts and 200 mm refractory concrete;and bottom wall with 232 mm high-alumina brick, 60 mm clay castables and 68 mm diatomite brick. Lining temperature from high to low was successively bottom wall, side wall, and top wall. Lining temperature gradient in increasing order of magnitude was refractory layer and insulation layer. It was indicated that the results of combination optimization of aluminum holding furnace linings were valid and feasible, and its thermo-physical mechanism and cost characteristics were reasonably revealed.展开更多
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on pa...In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.展开更多
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome...Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.展开更多
Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members signi...Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members significantly deviate from the true atmospheric state.Therefore,event samples with small probabilities may downgrade the accuracy of an ensemble forecast.In this study,the evolution of tropical storms(weak typhoon)was investigated and an observed tropical storm track was used to limit the probability distribution of samples.The ensemble forecast method used pure observation data instead of assimilated data.In addition,the prediction results for three tropical storm systems,Merbok,Mawar,and Guchol,showed that track and intensity errors could be reduced through sample optimization.In the research,the vertical structures of these tropical storms were compared,and the existence of different thermal structures was discovered.One possible reason for structural differences is sample optimization,and it may affect storm intensity and track.展开更多
Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closi...Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.展开更多
The vehicle routing problem (VRP) can be described as the problem of designing the optimal delivery or collection routes from one or several depots to a number of geographically scattered customers, subject to load co...The vehicle routing problem (VRP) can be described as the problem of designing the optimal delivery or collection routes from one or several depots to a number of geographically scattered customers, subject to load constraints. The routing decision involves determining which of the demand s will be satisfied by each vehicle and what route each vehicle will follow in s erving its assigned demand in order to minimize total delivery cost. In this pap er, a methodology for the design of VRP by integrating optimization and simulate d annealing (SA) approach is presented hierarchically. To express the problem of vehicle routing, a new mathematical formulation is first conducted. The objecti ve function involves both the delivery cost and the vehicle acquisition cost wit h load constraints. A heuristic is then proposed to solve this problem by using SA procedure in conjunction with any solution procedure of travelling salesman p roblem (TSP). The initial configuration is arranged as one vehicle route ser ving one customer. The SA searching procedure is then developed to combine custo mer to any one of the vehicle routes existed in the system if the capacity and c ost are attractive. An important concept of this proposed heuristic is that it attempts to minimize total number of vehicle required in the system on the b asis of the fixed cost and the variable cost view points. In addition, this appr oach can be easily adapted to accommodate many additional problem complexities.展开更多
This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using c...This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.展开更多
For the optimization of pipelines, most researchers are mainly concerned with designing the most reasonable section to meet the requirements of strength and stiffness, and at the same time reduce the cost as much as p...For the optimization of pipelines, most researchers are mainly concerned with designing the most reasonable section to meet the requirements of strength and stiffness, and at the same time reduce the cost as much as possible. It is undeniable that they do achieve this goal by using the lowest cost in design phase to achieve maximum benefits. However, for pipelines, the cost and incomes of operation management are far greater than those in design phase. Therefore, the novelty of this paper is to propose an optimization model that considers the costs and incomes of the construction and operation phases, and combines them into one model. By comparing three optimization algorithms (genetic algorithm, quantum genetic algorithm and simulated annealing algorithm), the same optimization problem is solved. Then the most suitable algorithm is selected and the optimal solution is obtained, which provides reference for construction and operation management during the whole life cycle of pipelines.展开更多
Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approac...Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approach. However, the computational cost associated with the use of GA has yet to be discussed. In this study, the parameters of sixteen explicit models for the estimation of friction factor in the turbulent flow regime were optimized using two popular global search methods namely genetic algorithm (GA) and simulated annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the range of and 100 interval values of relative roughness () in the range of , corresponding friction factor (f) data were obtained by solving Colebrook-White equation using Microsoft Excel spreadsheet. These data were then used to modify the parameters of the selected explicit models. Although both GA and SA led to either moderate or significant improvements in the accuracies of the existing friction factor models, SA outperforms the GA. Moreover, the SA requires far less computational time than the GA to complete the corresponding optimization process. It can therefore be concluded that SA is a better global optimizer than GA in the process of finding an improved explicit friction factor model as an alternative to the implicit Colebrook-White equation in the turbulent flow regime.展开更多
Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function...Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function of MFA dosage, pH and initial Cr(Ⅲ) concentration with the Box-Behnken approach used for experimental design and optimization using response surface methodology (RSM). pH and dosage (dosage and concentration) have significant interactive effects on Cr(Ⅲ) adsorption efficiency. Analysis of variance shows that the response surface quadratic model is highly significant and can effectively predict the experimental outcomes. Cr(Ⅲ) removal effi- ciency of 98% was obtained using optimized conditions of MFA dosage, pH and initial Cr(Ⅲ) concentration of 1,5 7 g. L- 1, 4.11 and 126 mg. L- 1, respectively. Cr(Ⅲ) adsorption onto MFA is mainly attributed to the interaction between Or(Ⅲ) and the functional group --OH of the hydrous magnesium oxide, in all probability caused by chemisorptions. The results of this study can conduce to reveal the interactions between Cr(Ⅲ) pollutant and MFA characteristics, posing important implications for the cost-effective alternative adsorption technology in the treatment of heavy metal containing wastewater.展开更多
In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strate...In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.展开更多
We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods...We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.展开更多
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ...To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.展开更多
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand...Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.展开更多
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
基金supported by the 2022 Project for Improving the Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities(Grant No.2022KY0209).
文摘In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.
基金supported by the National Natural Science Foundation of China(21978203)the Natural Science Foundation of Tianjin City(19JCYBJC20300)。
文摘Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving.
文摘This work presents a procedure to optimize the molecular geometry at the Hartree-Fock level, based on a global opti-mization method—the Generalized Simulated Annealing. The main characteristic of this methodology is that, at least in principle, it enables the mapping of the energy hypersurface as to guarantee the achievement of the absolute minimum. This method does not use expansions of the energy, nor of its derivates, in terms of the conformation variables. Distinctly, it performs a direct optimization of the total Hartree-Fock energy through a stochastic strategy. The algorithm was tested by determining the Hartree-Fock ground state and optimum geometries of the H2, LiH, BH, Li2, CH+, OH?, FH, CO, CH, NH, OH and O2 systems. The convergence of our algorithm is totally independent of the initial point and do not require any previous specification of the orbital occupancies.
基金Supported by the National Natural Science Foundation of China (No.60421002)
文摘The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity.
基金Supported by the National Natural Science Foundation of China(51306001)the Natural Science Foundation of Anhui Province(1408085QG138)+1 种基金the Natural Science Foundation of Anhui Technology University(QZ201303,QS201304)the Student Research Training Program of Anhui University of Technology(AH201310360120)
文摘To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simulated annealing. Meanwhile, a three-dimensional mathematical model of aluminum holding furnace linings was developed and integrated with user-defined heat load distribution regime model. The optimal combination was as follows: side wall with 80 mm alumino-silicate fiber felts, 232 mm diatomite brick and 116 mm chamotte brick; top wall with 50 mm clay castables, 110 mm alumino-silicate fiber felts and 200 mm refractory concrete;and bottom wall with 232 mm high-alumina brick, 60 mm clay castables and 68 mm diatomite brick. Lining temperature from high to low was successively bottom wall, side wall, and top wall. Lining temperature gradient in increasing order of magnitude was refractory layer and insulation layer. It was indicated that the results of combination optimization of aluminum holding furnace linings were valid and feasible, and its thermo-physical mechanism and cost characteristics were reasonably revealed.
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘In order to solve the problem of efficiently assigning tasks in an ad-hoc mobile cloud( AMC),a task assignment algorithm based on the heuristic algorithm is proposed. The proposed task assignment algorithm based on particle swarm optimization and simulated annealing( PSO-SA) transforms the dependencies between tasks into a directed acyclic graph( DAG) model. The number in each node represents the computation workload of each task and the number on each edge represents the workload produced by the transmission. In order to simulate the environment of task assignment in AMC,mathematical models are developed to describe the dependencies between tasks and the costs of each task are defined. PSO-SA is used to make the decision for task assignment and for minimizing the cost of all devices,which includes the energy consumption and time delay of all devices.PSO-SA also takes the advantage of both particle swarm optimization and simulated annealing by selecting an optimal solution with a certain probability to avoid falling into local optimal solution and to guarantee the convergence speed. The simulation results show that compared with other existing algorithms,the PSO-SA has a smaller cost and the result of PSO-SA can be very close to the optimal solution.
基金the Open Fund(PLC201104)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the National Natural Science Foundation of China(No.61072073)the Key Project of Education Commission of Sichuan Province(No.10ZA072)
文摘Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.
基金Science and Technology Planning Project of Guangdong Province(2017B020244002,2018B020208004,2017B030314140)Natural Science Foundation of Guangdong Province(2019A1515011118)+1 种基金National Natural Science Fund(41705089)Science and Technology Project of Guangdong Meteorological Service(GRMC2017Q01)
文摘Nowadays,ensemble forecasting is popular in numerical weather prediction(NWP).However,an ensemble may not produce a perfect Gaussian probability distribution due to limited members and the fact that some members significantly deviate from the true atmospheric state.Therefore,event samples with small probabilities may downgrade the accuracy of an ensemble forecast.In this study,the evolution of tropical storms(weak typhoon)was investigated and an observed tropical storm track was used to limit the probability distribution of samples.The ensemble forecast method used pure observation data instead of assimilated data.In addition,the prediction results for three tropical storm systems,Merbok,Mawar,and Guchol,showed that track and intensity errors could be reduced through sample optimization.In the research,the vertical structures of these tropical storms were compared,and the existence of different thermal structures was discovered.One possible reason for structural differences is sample optimization,and it may affect storm intensity and track.
文摘Historical mining activities often lead to continuing wide spread contaminants in both groundwater and surface water in previously operational mine site areas. The contamination may continue for many years after closing down the mining activities. The essential first step for sustainable management of groundwater and development of remediation strategies is the unknown contaminant source characterization. In a mining site, there are multiple species of contaminants involving complex geochemical processes. It is difficult to identify the potential sources and pathways incorporating the chemically reactive multiple species of contaminants making the source characterization process more challenging. To address this issue, a reactive transport simulation model PHT3D is linked to a Simulated Annealing based the optimum decision model. The numerical simulation model PHT3D is utilized for numerically simulating the reactive transport process involving multiple species in the former mine site area. The simulation results from the calibrated PHT3D model are illustrated, with and without incorporating the chemical reactions. These comparisons show the utility of using a reactive, geochemical transport process’ simulation model. Performance evaluation of the linked simulation optimization methodology is evaluated for a contamination scenario in a former mine site in Queensland, Australia. These performance evaluation results illustrate the applicability of linked simulation optimization model to identify the source characteristics while using PHT3D as a numerical reactive chemical species’ transport simulation model for the hydro-geochemically complex aquifer study area.
文摘The vehicle routing problem (VRP) can be described as the problem of designing the optimal delivery or collection routes from one or several depots to a number of geographically scattered customers, subject to load constraints. The routing decision involves determining which of the demand s will be satisfied by each vehicle and what route each vehicle will follow in s erving its assigned demand in order to minimize total delivery cost. In this pap er, a methodology for the design of VRP by integrating optimization and simulate d annealing (SA) approach is presented hierarchically. To express the problem of vehicle routing, a new mathematical formulation is first conducted. The objecti ve function involves both the delivery cost and the vehicle acquisition cost wit h load constraints. A heuristic is then proposed to solve this problem by using SA procedure in conjunction with any solution procedure of travelling salesman p roblem (TSP). The initial configuration is arranged as one vehicle route ser ving one customer. The SA searching procedure is then developed to combine custo mer to any one of the vehicle routes existed in the system if the capacity and c ost are attractive. An important concept of this proposed heuristic is that it attempts to minimize total number of vehicle required in the system on the b asis of the fixed cost and the variable cost view points. In addition, this appr oach can be easily adapted to accommodate many additional problem complexities.
文摘This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.
文摘For the optimization of pipelines, most researchers are mainly concerned with designing the most reasonable section to meet the requirements of strength and stiffness, and at the same time reduce the cost as much as possible. It is undeniable that they do achieve this goal by using the lowest cost in design phase to achieve maximum benefits. However, for pipelines, the cost and incomes of operation management are far greater than those in design phase. Therefore, the novelty of this paper is to propose an optimization model that considers the costs and incomes of the construction and operation phases, and combines them into one model. By comparing three optimization algorithms (genetic algorithm, quantum genetic algorithm and simulated annealing algorithm), the same optimization problem is solved. Then the most suitable algorithm is selected and the optimal solution is obtained, which provides reference for construction and operation management during the whole life cycle of pipelines.
文摘Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approach. However, the computational cost associated with the use of GA has yet to be discussed. In this study, the parameters of sixteen explicit models for the estimation of friction factor in the turbulent flow regime were optimized using two popular global search methods namely genetic algorithm (GA) and simulated annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the range of and 100 interval values of relative roughness () in the range of , corresponding friction factor (f) data were obtained by solving Colebrook-White equation using Microsoft Excel spreadsheet. These data were then used to modify the parameters of the selected explicit models. Although both GA and SA led to either moderate or significant improvements in the accuracies of the existing friction factor models, SA outperforms the GA. Moreover, the SA requires far less computational time than the GA to complete the corresponding optimization process. It can therefore be concluded that SA is a better global optimizer than GA in the process of finding an improved explicit friction factor model as an alternative to the implicit Colebrook-White equation in the turbulent flow regime.
基金Supported by the State Key Development Program for Basic Research of China(2014CB460601)the International S&T Cooperation Program of China(2014DFE70070)
文摘Hydrous magnesium oxide coated fly ash (MFA) has environmental remediation potential by providing a sub- strate for the adsorption of aqueous Cr(Ⅲ). Aqueous Cr(Ⅲ) adsorption onto MFA was examined as a function of MFA dosage, pH and initial Cr(Ⅲ) concentration with the Box-Behnken approach used for experimental design and optimization using response surface methodology (RSM). pH and dosage (dosage and concentration) have significant interactive effects on Cr(Ⅲ) adsorption efficiency. Analysis of variance shows that the response surface quadratic model is highly significant and can effectively predict the experimental outcomes. Cr(Ⅲ) removal effi- ciency of 98% was obtained using optimized conditions of MFA dosage, pH and initial Cr(Ⅲ) concentration of 1,5 7 g. L- 1, 4.11 and 126 mg. L- 1, respectively. Cr(Ⅲ) adsorption onto MFA is mainly attributed to the interaction between Or(Ⅲ) and the functional group --OH of the hydrous magnesium oxide, in all probability caused by chemisorptions. The results of this study can conduce to reveal the interactions between Cr(Ⅲ) pollutant and MFA characteristics, posing important implications for the cost-effective alternative adsorption technology in the treatment of heavy metal containing wastewater.
基金the National Natural Science Foundation of China(Grant No.51305372)the Open Fund Project of the Transportation Infrastructure Intelligent Management and Maintenance Engineering Technology Center of Xiamen City(Grant No.TCIMI201803)the Project of the 2011 Collaborative Innovation Center of Fujian Province(Grant No.2016BJC019).
文摘In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.
基金supported by the National Natural Science Foundation of China (NSFC)under Grant Nos.12172350,11772322 and 11702238。
文摘We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.
基金supported by the“National Natural Science Foundation of China”(Grant Nos.52105106,52305155)the“Jiangsu Province Natural Science Foundation”(Grant Nos.BK20210342,BK20230904)the“Young Elite Scientists Sponsorship Programby CAST”(Grant No.2023JCJQQT061).
文摘To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method.
基金the VNUHCM-University of Information Technology’s Scientific Research Support Fund.
文摘Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.