期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Coordinated control of conventional power sources and PHEVs using jaya algorithm optimized PID controller for frequency control of a renewable penetrated power system 被引量:5
1
作者 Anil Annamraju Srikanth Nandiraju 《Protection and Control of Modern Power Systems》 2019年第1期355-367,共13页
In renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conven... In renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conventional power sources (CPS) alone unable to control the frequency deviations caused by the aforementioned disturbances. Therefore, it is essential to modify the structure of LFC, to handle the disturbances caused by the RES and load. With regards to the above problem, this work proposes a novel coordinated LFC strategy with modified control signal to have Plug-in Hybrid Electric Vehicles (PHEVs) for frequency stability enhancement of the Japanese power system. Where, the coordinated control strategy is based on the PID controller, which is optimally tuned by the recently developed JAYA Algorithm (JA). Numerous simulations are performed with the proposed methodology and, the results have confirmed the effectiveness of a proposed approach over some recent and well-known techniques in literature. Furthermore, simulation results reveal that the proposed coordinated approach significantly minimizing the frequency deviations compared to the JAYA optimized LFC without PHEVs & with PHEVs but no coordination. 展开更多
关键词 PHEVs optimized pid controller Coordinated control Load frequency control JAYA algorithm
原文传递
Determination of AVR System PID Controller Parameters Using Improved Variants of Reptile Search Algorithm and a Novel Objective Function
2
作者 Baran Hekimoglu 《Energy Engineering》 EI 2023年第7期1515-1540,共26页
Two novel improved variants of reptile search algorithm(RSA),RSA with opposition-based learning(ORSA)and hybrid ORSA with pattern search(ORSAPS),are proposed to determine the proportional,integral,and derivative(PID)c... Two novel improved variants of reptile search algorithm(RSA),RSA with opposition-based learning(ORSA)and hybrid ORSA with pattern search(ORSAPS),are proposed to determine the proportional,integral,and derivative(PID)controller parameters of an automatic voltage regulator(AVR)system using a novel objective function with augmented flexibility.In the proposed algorithms,the opposition-based learning technique improves the global search abilities of the original RSA algorithm,while the hybridization with the pattern search(PS)algorithm improves the local search abilities.Both algorithms are compared with the original RSA algorithm and have shown to be highly effective algorithms for tuning the PID controller parameters of an AVR system by getting superior results.Several analyses such as transient,stability,robustness,disturbance rejection,and trajectory tracking are conducted to test the performance of the proposed algorithms,which have validated the good promise of the proposed methods for controller designs.The performances of the proposed design approaches are also compared with the previously reported PID controller parameter tuning approaches to assess their success.It is shown that both proposed approaches obtain excellent and robust results among all compared ones.That is,with the adjustment of the weight factorα,which is introduced by the proposed objective function,for a system with high bandwitdh(α=1),the proposed ORSAPS-PID system has 2.08%more bandwidth than the proposed ORSA-PID system and 5.1%faster than the fastest algorithm from the literature.On the other hand,for a system where high phase and gain margins are desired(α=10),the proposed ORSA-PID system has 0.53%more phase margin and 2.18%more gain margin than the proposed ORSAPS-PID system and has 0.71%more phase margin and 2.25%more gain margin than the best performing algorithm from the literature. 展开更多
关键词 Reptile search algorithm pattern search multidirectional search metaheuristics automatic voltage regulator optimal pid controller
下载PDF
Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model 被引量:7
3
作者 Min Zhu Chunling Yang Weiliang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期828-837,共10页
An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the... An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the inertia weight of global optimal particles and the introduction of D-Tent chaotic sequence. Through the test of typical function and the autotuning test of proportionalintegral-derivative (PID) parameter, finally a simulation is made to the servo control system of a permanent magnet synchronous motor (PMSM) under double-loop control of rotating speed and current by utilizing the chaotic particle swarm algorithm. Studies show that the proposed algorithm can reduce the iterative times and improve the convergence rate under the condition that the global optimal solution can be got. 展开更多
关键词 D-Tent particle swarm proportional-integral- derivative pid parameter optimization.
下载PDF
Generalized Internal Model Robust Control for Active Front Steering Intervention 被引量:7
4
作者 WU Jian ZHAO Youqun +2 位作者 JI Xuewu LIU Yahui ZHANG Lipeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期285-293,共9页
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde... Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller. 展开更多
关键词 active front steering system generalized internal model robust control H_∞ optimization pid split-μ road
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部