The rapid development of electric buses has brought a surge in the number of bus hubs and their charging and discharging capacities.Therefore,the location and construction scale of bus hubs will greatly affect the ope...The rapid development of electric buses has brought a surge in the number of bus hubs and their charging and discharging capacities.Therefore,the location and construction scale of bus hubs will greatly affect the operation costs and benefits of an urban distribution network in the future.Through the scientific and reasonable planning of public transport hubs on the premise of meeting the needs of basic public transport services,it can reduce the negative impact of electric bus charging loads upon the power grids.Furthermore,it can use its flexible operation characteristics to provide flexible support for the distribution network.In this paper,taking the impact of public transport hub on the reliability of distribution network as the starting point,a three-level programming optimization model based on the value and economy of distribution network load loss is proposed.Through the upper model,several planning schemes can be generated,which provides boundary conditions for the expansion of middle-level optimization.The normal operation dispatching scheme of public transport hub obtained from the middle-level optimization results provides boundary conditions for the development of lower level optimization.Through the lower level optimization,the expected load loss of the whole distribution system including bus hub under the planning scheme given by the upper level can be obtained.The effectiveness of the model is verified by an IEEE-33 bus example.展开更多
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no...This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.展开更多
An improved optimization algorithm combining the differential evolution algorithm and the whale algorithm is proposed for the problem of not being able to get rid of the local optimum in the economic load distribution...An improved optimization algorithm combining the differential evolution algorithm and the whale algorithm is proposed for the problem of not being able to get rid of the local optimum in the economic load distribution algorithm. The algorithm adopts a nonlinear convergence strategy, a crossover strategy of differential evolution and the introduction of an elimination mechanism, which balances the global search and local exploitation ability of the algorithm and improves the accuracy of the solved optimal solution. The 13-unit and 40-unit systems are selected for economic load distribution calculation, and the experimental results show that the proposed improved algorithm is superior in distributing the economic load of the power system and can effectively reduce the economic cost.展开更多
This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is use...This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.展开更多
After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s ...After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.展开更多
This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, ...This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.展开更多
Replication is an approach often used to speed up the execution of queries submitted to a large dataset.A compile-time/run-time approach is presented for minimizing the response time of 2-dimensional range when a dist...Replication is an approach often used to speed up the execution of queries submitted to a large dataset.A compile-time/run-time approach is presented for minimizing the response time of 2-dimensional range when a distributed replica of a dataset exists.The aim is to partition the query payload(and its range) into subsets and distribute those to the replica nodes in a way that minimizes a client's response time.However,since query size and distribution characteristics of data(data dense/sparse regions) in varying ranges are not known a priori,performing efficient load balancing and parallel processing over the unpredictable workload is difficult.A technique based on the creation and manipulation of dynamic spatial indexes for query payload estimation in distributed queries was proposed.The effectiveness of this technique was demonstrated on queries for analysis of archived earthquake-generated seismic data records.展开更多
This paper investigates the resource optimization problem for a multi-cell massive multiple-input multiple-output(MIMO)network in which each base station(BS)is equipped with a large number of antennas and each base st...This paper investigates the resource optimization problem for a multi-cell massive multiple-input multiple-output(MIMO)network in which each base station(BS)is equipped with a large number of antennas and each base station(BS)adapts the number of antennas to the daily load profile(DLP).This paper takes into consideration user location distribution(ULD)variation and evaluates its impact on the energy efficiency of load adaptive massive MIMO system.ULD variation is modeled by dividing the cell into two coverage areas with different user densities:boundary focused(BF)and center focused(CF)ULD.All cells are assumed identical in terms of BS configurations,cell loading,and ULD variation and each BS is modeled as an M/G/m/m state dependent queue that can serve a maximum number of users at the peak load.Together with energy efficiency(EE)we analyzed deployment and spectrum efficiency in our adaptive massive MIMO system by evaluating the impact of cell size,available bandwidth,output power level of the BS,and maximum output power of the power amplifier(PA)at different cell loading.We also analyzed average energy consumption on an hourly basis per BS for the model proposed for data traffic in Europe and also the model proposed for business,residential,street,and highway areas.展开更多
This paper proposes a multi-objective index-based approach to optimally determine the size and location of multi-distributed generators (DG) units in distribution system with different load models. It is shown that lo...This paper proposes a multi-objective index-based approach to optimally determine the size and location of multi-distributed generators (DG) units in distribution system with different load models. It is shown that load models can significantly affect the optimal location and sizing of DG resources in distribution systems. The proposed multi-objective function to be optimized includes a short circuit level parameter to represent the protective device requirements. The proposed function also considers a wide range of technical issues such as active and reactive power losses of the system, the voltage profile, the line loading and the MVA intake by the grid. The optimization technique based on particle swarm optimization (PSO) is introduced. The analysis of continuation power flow to determine the effect of DG units on the most sensitive buses to voltage collapse is carried out. The proposed algorithm is tested using the 38-bus radial system and the IEEE 30-bus meshed system. The results show the effectiveness of the proposed algorithm.展开更多
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall...Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.展开更多
Adaptive wings have long used smooth morphing technique of compliant leading and trailing edge to improve their aerodynamic characteristics. This paper introduces a systematic approach to design compliant structures t...Adaptive wings have long used smooth morphing technique of compliant leading and trailing edge to improve their aerodynamic characteristics. This paper introduces a systematic approach to design compliant structures to carry out required shape changes under distributed pressure loads. In order to minimize the deviation of the deformed shape from the target shape, this method uses MATLAB and ANSYS to optimize the distributed compliant mechanisms by way of the ground approach and genetic algorithm (GA) to remove the elements possessive of very low stresses. In the optimization process, many factors should be considered such as airloads, input displacements, and geometric nonlinearities. Direct search method is used to locally optimize the dimension and input displacement after the GA optimization. The resultant structure could make its shape change from 0 to 9.3 degrees. The experimental data of the model confirms the feasibility of this approach.展开更多
Load distribution is a key technology in hot strip rolling process, which directly influences strip product quality. A multi-objective load distribution model, which takes into account the rolling force margin balance...Load distribution is a key technology in hot strip rolling process, which directly influences strip product quality. A multi-objective load distribution model, which takes into account the rolling force margin balance, roll wear ratio and strip shape control, is presented. To avoid the selection of weight coefficients encountered in single objective optimization, a multi-objective differential evolutionary algorithm, called MaximinDE, is proposed to solve this model. The experimental results based on practical production data indicate that MaximinDE can obtain a good pareto-optimal solution set, which consists of a series of alternative solutions to load distribution. Decision-makers can select a trade-off solution from the pareto-optimal solution set based on their experience or the importance of ob- iectives. In comparison with the empirical load distribution solution, the trade-off solution can achieve a better per- formance, which demonstrates the effectiveness of the multi-objective load distribution optimization. Moreover, the conflicting relationship among different objectives can be also found, which is another advantage of multi-objective load distribution optimization.展开更多
In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formu...In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.展开更多
To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the ...To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the active distribution network(ADN)optimization problem considering the uncertainties of the source and load in this paper.By establishing an ambiguity set to capture the uncertainties of the photovoltaic(PV)power,wind power and load,the piecewise-linear function and auxiliary parameters are introduced to help characterize the probability distribution of uncertain variables.The optimization goal of the model is to minimize the total expected cost under the worst-case distribution in the ambiguity set.The first-stage expected cost is obtained based on the predicted value of the uncertainty variable.The second-stage expected cost is based on the actual value of the uncertainty variable to solve the first-stage decision.The generalized linear decision rule approximates the two-stage optimization model,and the affine function is introduced to provide a closer approximation to the second-stage optimization model.Finally,the improved IEEE 33-node and IEEE 118-node systems are simulated and analyzed with deterministic methods,stochastic programming,and robust optimization methods to verify the feasibility and superiority of the proposed model and algorithm.展开更多
The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real...The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real time for resolving various challenges such as localization,motion controlling,mapping,route planning,etc.The distributed robotic control system can manage different kinds of heterogenous devices.Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements.For instance,scheduling of resources(such as communication channel,computation unit,robot chassis,or sensor input)to the various system components turns out to be an essential requirement for completing the tasks on time.Therefore,resource scheduling is necessary for ensuring effective execution.In this regard,this paper introduces a novel chaotic shell game optimization algorithm(CSGOA)for resource scheduling,known as the CSGOA-RS technique for the distributed robotic control system environment.The CSGOA technique is based on the integration of the chaotic maps concept to the SGO algorithm for enhancing the overall performance.The CSGOA-RS technique is designed for allocating the resources in such a way that the transfer time is minimized and the resource utilization is increased.The CSGOA-RS technique is applicable even for the unpredicted environment where the resources are to be allotted dynamically based on the early estimations.For validating the enhanced performance of the CSGOA-RS technique,a series of simulations have been carried out and the obtained results have been examined with respect to a selected set of measures.The resultant outcomes highlighted the promising performance of the CSGOA-RS technique over the other resource scheduling techniques.展开更多
文摘The rapid development of electric buses has brought a surge in the number of bus hubs and their charging and discharging capacities.Therefore,the location and construction scale of bus hubs will greatly affect the operation costs and benefits of an urban distribution network in the future.Through the scientific and reasonable planning of public transport hubs on the premise of meeting the needs of basic public transport services,it can reduce the negative impact of electric bus charging loads upon the power grids.Furthermore,it can use its flexible operation characteristics to provide flexible support for the distribution network.In this paper,taking the impact of public transport hub on the reliability of distribution network as the starting point,a three-level programming optimization model based on the value and economy of distribution network load loss is proposed.Through the upper model,several planning schemes can be generated,which provides boundary conditions for the expansion of middle-level optimization.The normal operation dispatching scheme of public transport hub obtained from the middle-level optimization results provides boundary conditions for the development of lower level optimization.Through the lower level optimization,the expected load loss of the whole distribution system including bus hub under the planning scheme given by the upper level can be obtained.The effectiveness of the model is verified by an IEEE-33 bus example.
文摘This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.
文摘An improved optimization algorithm combining the differential evolution algorithm and the whale algorithm is proposed for the problem of not being able to get rid of the local optimum in the economic load distribution algorithm. The algorithm adopts a nonlinear convergence strategy, a crossover strategy of differential evolution and the introduction of an elimination mechanism, which balances the global search and local exploitation ability of the algorithm and improves the accuracy of the solved optimal solution. The 13-unit and 40-unit systems are selected for economic load distribution calculation, and the experimental results show that the proposed improved algorithm is superior in distributing the economic load of the power system and can effectively reduce the economic cost.
文摘This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.
基金supported by the State Grid Tianjin Electric Power Company Science and Technology Project (Grant No. KJ22-1-45)。
文摘After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.
文摘This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.
文摘Replication is an approach often used to speed up the execution of queries submitted to a large dataset.A compile-time/run-time approach is presented for minimizing the response time of 2-dimensional range when a distributed replica of a dataset exists.The aim is to partition the query payload(and its range) into subsets and distribute those to the replica nodes in a way that minimizes a client's response time.However,since query size and distribution characteristics of data(data dense/sparse regions) in varying ranges are not known a priori,performing efficient load balancing and parallel processing over the unpredictable workload is difficult.A technique based on the creation and manipulation of dynamic spatial indexes for query payload estimation in distributed queries was proposed.The effectiveness of this technique was demonstrated on queries for analysis of archived earthquake-generated seismic data records.
文摘This paper investigates the resource optimization problem for a multi-cell massive multiple-input multiple-output(MIMO)network in which each base station(BS)is equipped with a large number of antennas and each base station(BS)adapts the number of antennas to the daily load profile(DLP).This paper takes into consideration user location distribution(ULD)variation and evaluates its impact on the energy efficiency of load adaptive massive MIMO system.ULD variation is modeled by dividing the cell into two coverage areas with different user densities:boundary focused(BF)and center focused(CF)ULD.All cells are assumed identical in terms of BS configurations,cell loading,and ULD variation and each BS is modeled as an M/G/m/m state dependent queue that can serve a maximum number of users at the peak load.Together with energy efficiency(EE)we analyzed deployment and spectrum efficiency in our adaptive massive MIMO system by evaluating the impact of cell size,available bandwidth,output power level of the BS,and maximum output power of the power amplifier(PA)at different cell loading.We also analyzed average energy consumption on an hourly basis per BS for the model proposed for data traffic in Europe and also the model proposed for business,residential,street,and highway areas.
文摘This paper proposes a multi-objective index-based approach to optimally determine the size and location of multi-distributed generators (DG) units in distribution system with different load models. It is shown that load models can significantly affect the optimal location and sizing of DG resources in distribution systems. The proposed multi-objective function to be optimized includes a short circuit level parameter to represent the protective device requirements. The proposed function also considers a wide range of technical issues such as active and reactive power losses of the system, the voltage profile, the line loading and the MVA intake by the grid. The optimization technique based on particle swarm optimization (PSO) is introduced. The analysis of continuation power flow to determine the effect of DG units on the most sensitive buses to voltage collapse is carried out. The proposed algorithm is tested using the 38-bus radial system and the IEEE 30-bus meshed system. The results show the effectiveness of the proposed algorithm.
基金jointly supported by the Jiangsu Postgraduate Research and Practice Innovation Project under Grant KYCX22_1030,SJCX22_0283 and SJCX23_0293the NUPTSF under Grant NY220201.
文摘Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.
基金National Natural Science Foundation of China (50675175)
文摘Adaptive wings have long used smooth morphing technique of compliant leading and trailing edge to improve their aerodynamic characteristics. This paper introduces a systematic approach to design compliant structures to carry out required shape changes under distributed pressure loads. In order to minimize the deviation of the deformed shape from the target shape, this method uses MATLAB and ANSYS to optimize the distributed compliant mechanisms by way of the ground approach and genetic algorithm (GA) to remove the elements possessive of very low stresses. In the optimization process, many factors should be considered such as airloads, input displacements, and geometric nonlinearities. Direct search method is used to locally optimize the dimension and input displacement after the GA optimization. The resultant structure could make its shape change from 0 to 9.3 degrees. The experimental data of the model confirms the feasibility of this approach.
基金Item Sponsored by National Natural Science Foundation of China(50974039)
文摘Load distribution is a key technology in hot strip rolling process, which directly influences strip product quality. A multi-objective load distribution model, which takes into account the rolling force margin balance, roll wear ratio and strip shape control, is presented. To avoid the selection of weight coefficients encountered in single objective optimization, a multi-objective differential evolutionary algorithm, called MaximinDE, is proposed to solve this model. The experimental results based on practical production data indicate that MaximinDE can obtain a good pareto-optimal solution set, which consists of a series of alternative solutions to load distribution. Decision-makers can select a trade-off solution from the pareto-optimal solution set based on their experience or the importance of ob- iectives. In comparison with the empirical load distribution solution, the trade-off solution can achieve a better per- formance, which demonstrates the effectiveness of the multi-objective load distribution optimization. Moreover, the conflicting relationship among different objectives can be also found, which is another advantage of multi-objective load distribution optimization.
文摘In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.
基金supported by Natural Science Foundation of Beijing Municipality(No.3161002)National Key R&D Program(No.2017YFB0903300).
文摘To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the active distribution network(ADN)optimization problem considering the uncertainties of the source and load in this paper.By establishing an ambiguity set to capture the uncertainties of the photovoltaic(PV)power,wind power and load,the piecewise-linear function and auxiliary parameters are introduced to help characterize the probability distribution of uncertain variables.The optimization goal of the model is to minimize the total expected cost under the worst-case distribution in the ambiguity set.The first-stage expected cost is obtained based on the predicted value of the uncertainty variable.The second-stage expected cost is based on the actual value of the uncertainty variable to solve the first-stage decision.The generalized linear decision rule approximates the two-stage optimization model,and the affine function is introduced to provide a closer approximation to the second-stage optimization model.Finally,the improved IEEE 33-node and IEEE 118-node systems are simulated and analyzed with deterministic methods,stochastic programming,and robust optimization methods to verify the feasibility and superiority of the proposed model and algorithm.
基金supported by the National Natural Science Foundation of China (No. 51178141)National Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07408-002-004-002)
文摘The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real time for resolving various challenges such as localization,motion controlling,mapping,route planning,etc.The distributed robotic control system can manage different kinds of heterogenous devices.Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements.For instance,scheduling of resources(such as communication channel,computation unit,robot chassis,or sensor input)to the various system components turns out to be an essential requirement for completing the tasks on time.Therefore,resource scheduling is necessary for ensuring effective execution.In this regard,this paper introduces a novel chaotic shell game optimization algorithm(CSGOA)for resource scheduling,known as the CSGOA-RS technique for the distributed robotic control system environment.The CSGOA technique is based on the integration of the chaotic maps concept to the SGO algorithm for enhancing the overall performance.The CSGOA-RS technique is designed for allocating the resources in such a way that the transfer time is minimized and the resource utilization is increased.The CSGOA-RS technique is applicable even for the unpredicted environment where the resources are to be allotted dynamically based on the early estimations.For validating the enhanced performance of the CSGOA-RS technique,a series of simulations have been carried out and the obtained results have been examined with respect to a selected set of measures.The resultant outcomes highlighted the promising performance of the CSGOA-RS technique over the other resource scheduling techniques.