With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy e...With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.展开更多
Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these adv...Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these advancements, efficiently programming GPUs remains a daunting challenge, often relying on trial-and-error optimization methods. This paper introduces an optimization technique for CUDA programs through a novel Data Layout strategy, aimed at restructuring memory data arrangement to significantly enhance data access locality. Focusing on the dynamic programming algorithm for chained matrix multiplication—a critical operation across various domains including artificial intelligence (AI), high-performance computing (HPC), and the Internet of Things (IoT)—this technique facilitates more localized access. We specifically illustrate the importance of efficient matrix multiplication in these areas, underscoring the technique’s broader applicability and its potential to address some of the most pressing computational challenges in GPU-accelerated applications. Our findings reveal a remarkable reduction in memory consumption and a substantial 50% decrease in execution time for CUDA programs utilizing this technique, thereby setting a new benchmark for optimization in GPU computing.展开更多
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit...An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.展开更多
The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process f...The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.展开更多
The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. Firs...The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. First, genetic algorithm is adopted to conduct global search and sensor layout optimization method is selected to satisfy four indicators. Then, by means of Matlab, the variation of these four indicators with different sensor layouts and reconstruction accuracy are analyzed and discussed. The results indicate that the sensor layout method proposed by this paper can reconstruct explosion overpressure field at the highest precision by a minimum number of sensors. It will guide actual explosion experiments in a cost-effective way.展开更多
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red...Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.展开更多
The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the object...The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the objective function with the global stiffness constraint. In the layout optimization, the stiffeners should be placed at the locations with high strain energy/or stress. Conversely, elements of stiffeners with a small strain energy/or stress are considered to be used inefficiently and can be removed. Thus, to identify the element efficiency so that most inefficiently used elements of stiffeners can be removed, the element sensitivity of the strain energy of stiffeners is introduced, and a search criterion for locations of stiffeners is presented. The layout optimization approach is given for determining which elements of the stiffeners need to be kept or removed. In each iterative design, a high efficiency reanalysis approach is used to reduce the computational effort. The present approach is implemented for the layout optimization of stiffeners for a bunker loaded by the hydrostatic pressure. The numerical results show that the present approach is effective for dealing with layout optimization of stiffeners for plate-shell structures.展开更多
Urban park is one of the few green spaces that retain natural traces and are easy for the elderly to reach,and it has become the main place for the elderly to carry out leisure,entertainment,physical fi tness and inte...Urban park is one of the few green spaces that retain natural traces and are easy for the elderly to reach,and it has become the main place for the elderly to carry out leisure,entertainment,physical fi tness and interpersonal activities.The reasonable layout of urban parks is of great signifi cance to improve the quality of life of the elderly in old age.In this article,using the network analysis method in ArcGIS software,the accessibility of urban parks in Xihu District of Nanchang City based on elderly walking was evaluated and analyzed,and three strategies for optimizing the layout of the urban parks were proposed,including increasing the number of urban parks,improving the urban traffic network,and strengthening urban greenway planning and construction.The research results can provide reference for the optimal layout of urban parks in Xihu District,Nanchang City,so that the urban parks can better meet the outdoor leisure needs of the elderly,and the elderly’s sense of well-being and gain is enhanced.展开更多
To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against t...To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio.展开更多
The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain op...The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.展开更多
The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding worksh...The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.展开更多
Land is the foundation for human survival and development,and all human social and economic activities are inseparable from the land as a space carrier.With the continuous development of China's social economy,Chi...Land is the foundation for human survival and development,and all human social and economic activities are inseparable from the land as a space carrier.With the continuous development of China's social economy,China is facing new social development needs such as urban-rural integration and rural revitalization.At the same time,China starts to attach great importance to ecology and has proposed the concept that lucid waters and lush mountains are invaluable assets.In this situation,the rational use of land resources,the optimization of land use structure and layout are also facing new challenges and problems,and more comprehensive consideration is required to make relevant optimization.Using the method of literature comparative analysis,from the conceptual connotation,basic theory,method model,and specific practice of land use structure and layout optimization,this paper analyzed and summarized the current research situations and problems,and finally came up with recommendations for the future research.展开更多
A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distributi...A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations.In order to improve the properties of the air flow,in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system.As a result,the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are proposed accordingly.The numerical results indicate that,for the original layout,the local pressure drop of the tee section accounts for approximately 74%of the total drop of the system,with other pressure drops depending on the specific branch considered.It is shown that after optimization,a roughly balanced flow resistance and flow rate can be obtained.Compared with the original layout,the pressure drop relating to different branches is significantly reduced.展开更多
Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determi...Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determined. This process is called stope layout optimization (SLO) and implemented under site-specific geotechnical, operational and economic constraints. For practical purpose, the design obtained by SLO shows consecutive stopes in one path, which assists in defining the mining direction of these stopes. However, this direction may not accommodate the spatial distribution of the ore grade: if the orebody orientation and mining direction differ, the value of the mining operation may decrease. This paper proposes an approach whereby paths in the SLO are defined as decision variables to avoid the cost of mining in the wrong direction. Furthermore, in the genetic-based formulation, which accounts for orebody uncertainty, a robust cluster average design process is proposed to improve SLO’s performance regarding metal content. A case study in narrow gold vein deposit shows that the profit of an underground mining operation could be underestimated by 25%-48% if the algorithm ignores stope layout orientation.展开更多
The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land i...The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.展开更多
As the first step of the fire/gas-detection systems of floating production storage and offloading(FPSO)units is to iden-tify leakage accidents,gas detectors play an important role in controlling the leakage risk.To im...As the first step of the fire/gas-detection systems of floating production storage and offloading(FPSO)units is to iden-tify leakage accidents,gas detectors play an important role in controlling the leakage risk.To improve the leakage scenario detection rate and reduce the cumulative risk value,this paper presents an optimization method of the gas detector placement.The probability density distribution and cumulative probability density distribution of the leakage source variables and environmental variables were calculated based on the Offshore Reliability Data and the statistical data of the relevant leakage variables.A potential leakage sce-nario set was constructed using Latin hypercube sampling.The typical FPSO leakage scenarios were analyzed through computational fluid dynamics(CFD),and the impacts of different parameters on the leakage were addressed.A series of detectors was deployed according to the simulation results.The minimization of the product of effective detection time and gas leakage volume was the risk optimization objective,and the location and number of detectors were taken as decision variables.A greedy extraction heuristic algo-rithm was used to solve the optimization problem.The results show that the optimized placement had a better monitoring effect on the leakage scenario.展开更多
For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yie...For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yield loss caused by redundancy material defects, the choice of nets to be optimized at first is an important step in the process of layout optimization. This paper provides a new sensitivity model for a short net, which is net-based and reflects the size of the critical area between a single net and the nets around it. Since this model is based on a single net and includes the information of the surrounding nets, the critical area between the single net and surrounding nets can be reduced at the same time. In this way, the efficiency of layout optimization becomes higher. According to experimental observations~ this sensitivity model can be used to choose the position for optimization. Compared with the chip-area-based and basic- layout-based sensitivity models, our sensitivity model not only has higher efficiency, but also confirms that choosing the net to be optimized at first improves the design.展开更多
This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although th...This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although this criterion is considered a reference value for empirical and numerical calculations,some limitations of its basic simplifications have not been clarified yet.This research compares the analytical results obtained from the novel discontinuity layout optimization(DLO)method and the numerical solutions from the finite difference method(FDM).The limitations of the analytical solution are considered by comparing different DLO failure modes,thus allowing for the first time a critical evaluation of its scope and conditioning for implementation.Errors of up to 40%in the bearing capacity and unrealistic failure modes are the main issues in the analytical solution.The main aspects of the DLO method are also analyzed with an emphasis on the linearization of the rock failure criterion and the accuracy resulting from the discretization size.The analysis demonstrates DLO as a very efficient and accurate tool to address the pile tip bearing capacity,presenting considerable advantages over other methods.展开更多
In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missin...In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.展开更多
In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these metho...In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.展开更多
文摘With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.
文摘Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these advancements, efficiently programming GPUs remains a daunting challenge, often relying on trial-and-error optimization methods. This paper introduces an optimization technique for CUDA programs through a novel Data Layout strategy, aimed at restructuring memory data arrangement to significantly enhance data access locality. Focusing on the dynamic programming algorithm for chained matrix multiplication—a critical operation across various domains including artificial intelligence (AI), high-performance computing (HPC), and the Internet of Things (IoT)—this technique facilitates more localized access. We specifically illustrate the importance of efficient matrix multiplication in these areas, underscoring the technique’s broader applicability and its potential to address some of the most pressing computational challenges in GPU-accelerated applications. Our findings reveal a remarkable reduction in memory consumption and a substantial 50% decrease in execution time for CUDA programs utilizing this technique, thereby setting a new benchmark for optimization in GPU computing.
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.22120220649)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV202318).
文摘An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.
基金Supported by the National High Technology Research and Development Program of China (863 Program) under Grant No.2006AA09A104
文摘The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.
基金Natural Science Foudation of Shanxi Province of China(No.2013011017-8)
文摘The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. First, genetic algorithm is adopted to conduct global search and sensor layout optimization method is selected to satisfy four indicators. Then, by means of Matlab, the variation of these four indicators with different sensor layouts and reconstruction accuracy are analyzed and discussed. The results indicate that the sensor layout method proposed by this paper can reconstruct explosion overpressure field at the highest precision by a minimum number of sensors. It will guide actual explosion experiments in a cost-effective way.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.
基金Project supported by the Foundation of University's Doctorial Subjects of China (No.20010183013)985-Automotive Engineering of Jilin University.
文摘The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the objective function with the global stiffness constraint. In the layout optimization, the stiffeners should be placed at the locations with high strain energy/or stress. Conversely, elements of stiffeners with a small strain energy/or stress are considered to be used inefficiently and can be removed. Thus, to identify the element efficiency so that most inefficiently used elements of stiffeners can be removed, the element sensitivity of the strain energy of stiffeners is introduced, and a search criterion for locations of stiffeners is presented. The layout optimization approach is given for determining which elements of the stiffeners need to be kept or removed. In each iterative design, a high efficiency reanalysis approach is used to reduce the computational effort. The present approach is implemented for the layout optimization of stiffeners for a bunker loaded by the hydrostatic pressure. The numerical results show that the present approach is effective for dealing with layout optimization of stiffeners for plate-shell structures.
基金General Project of Humanities and Social Science Research of Ministry of Education,China(16YJC760073)Social Science Planning Project of Jiangxi Province(18YS07)+1 种基金Humanities and Social Science Research Project for Colleges and Universities in Jiangxi Province(YS1531)Innovation and Entrepreneurship Training Program for Undergraduates in Jiangxi Agricultural University(S202010410015).
文摘Urban park is one of the few green spaces that retain natural traces and are easy for the elderly to reach,and it has become the main place for the elderly to carry out leisure,entertainment,physical fi tness and interpersonal activities.The reasonable layout of urban parks is of great signifi cance to improve the quality of life of the elderly in old age.In this article,using the network analysis method in ArcGIS software,the accessibility of urban parks in Xihu District of Nanchang City based on elderly walking was evaluated and analyzed,and three strategies for optimizing the layout of the urban parks were proposed,including increasing the number of urban parks,improving the urban traffic network,and strengthening urban greenway planning and construction.The research results can provide reference for the optimal layout of urban parks in Xihu District,Nanchang City,so that the urban parks can better meet the outdoor leisure needs of the elderly,and the elderly’s sense of well-being and gain is enhanced.
基金This project is supported by National Natural Science Foundation of China (No.50275019, No.50335040, No.50575031).
文摘To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio.
基金supported by Aerospace Frontier Inspiration Project (Grant No.KY0505072113) from College of Aerospace Science and Engineering,NUDT,which are gratefully acknowledged by the authors.
文摘The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.
文摘The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.
文摘Land is the foundation for human survival and development,and all human social and economic activities are inseparable from the land as a space carrier.With the continuous development of China's social economy,China is facing new social development needs such as urban-rural integration and rural revitalization.At the same time,China starts to attach great importance to ecology and has proposed the concept that lucid waters and lush mountains are invaluable assets.In this situation,the rational use of land resources,the optimization of land use structure and layout are also facing new challenges and problems,and more comprehensive consideration is required to make relevant optimization.Using the method of literature comparative analysis,from the conceptual connotation,basic theory,method model,and specific practice of land use structure and layout optimization,this paper analyzed and summarized the current research situations and problems,and finally came up with recommendations for the future research.
文摘A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations.The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations.In order to improve the properties of the air flow,in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system.As a result,the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are proposed accordingly.The numerical results indicate that,for the original layout,the local pressure drop of the tee section accounts for approximately 74%of the total drop of the system,with other pressure drops depending on the specific branch considered.It is shown that after optimization,a roughly balanced flow resistance and flow rate can be obtained.Compared with the original layout,the pressure drop relating to different branches is significantly reduced.
基金Project(488262-15)supported by the Natural Sciences and Engineering Research Council of Canada
文摘Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determined. This process is called stope layout optimization (SLO) and implemented under site-specific geotechnical, operational and economic constraints. For practical purpose, the design obtained by SLO shows consecutive stopes in one path, which assists in defining the mining direction of these stopes. However, this direction may not accommodate the spatial distribution of the ore grade: if the orebody orientation and mining direction differ, the value of the mining operation may decrease. This paper proposes an approach whereby paths in the SLO are defined as decision variables to avoid the cost of mining in the wrong direction. Furthermore, in the genetic-based formulation, which accounts for orebody uncertainty, a robust cluster average design process is proposed to improve SLO’s performance regarding metal content. A case study in narrow gold vein deposit shows that the profit of an underground mining operation could be underestimated by 25%-48% if the algorithm ignores stope layout orientation.
基金Natural Science Foundation of Hubei Province(No.2021CFB402)Key Laboratory of National Geographic Census and Monitoring,Ministry of Natural Resources(No.2020NGCMZD03)。
文摘The delimitation of urban development boundaries plays an important role in optimizing the nation land space.“Double evaluation”is one of the important means to study and predict the scale of new construction land in the future and to determine the spatial distribution of urban construction land.This study combines the“double evaluation”with the FLUS(Future Land-Use Simulation)model to study the delimitation of the urban development boundary of Yichang.The results show that:(1)the“double evaluation”method comprehensively considers the carrying capacity of the resource environmental bear and the suitability of urban development;(2)the FLUS model can better couple the“double evaluation”method for Land Use/Land Cover(LULC)suitability evaluation,Land Use/land Cover Change(LUCC)simulation and urban development boundary delineation,and the overall accuracy of the simulation reaches 96%;(3)according to the requirements of relevant national policies,this study divides the urban development boundary of the study area into concentrated construction areas,elastic development areas and special purpose areas.This function-based division can meet the requirements of urban flexible development,ecological protection and urban safety.This research combines the FLUS model,which is widely used in the simulation of LUCC,with the double evaluation method used in China’s new round of land and space planning to obtain the result of the urban development boundary.This result is consistent with the existing plan of the study area.
基金support of the Fundamen-tal Research Funds for the Central Universities(No.3072021CF0101)the‘Integration Software of Offshore Float-ing Platform Engineering Design(No.2016YFC0302900)’from the Ministry of Science and Technology of China,and the Project of Development of Floating Offshore Wind Turbine Risk Assessment Software Project,funded by the International S&T Cooperation Program of China(No.2013DFE73060).
文摘As the first step of the fire/gas-detection systems of floating production storage and offloading(FPSO)units is to iden-tify leakage accidents,gas detectors play an important role in controlling the leakage risk.To improve the leakage scenario detection rate and reduce the cumulative risk value,this paper presents an optimization method of the gas detector placement.The probability density distribution and cumulative probability density distribution of the leakage source variables and environmental variables were calculated based on the Offshore Reliability Data and the statistical data of the relevant leakage variables.A potential leakage sce-nario set was constructed using Latin hypercube sampling.The typical FPSO leakage scenarios were analyzed through computational fluid dynamics(CFD),and the impacts of different parameters on the leakage were addressed.A series of detectors was deployed according to the simulation results.The minimization of the product of effective detection time and gas leakage volume was the risk optimization objective,and the location and number of detectors were taken as decision variables.A greedy extraction heuristic algo-rithm was used to solve the optimization problem.The results show that the optimized placement had a better monitoring effect on the leakage scenario.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173088 and 61070143)the Programme of Introducing Talents of Discipline to Universities (Grant No. B08038)
文摘For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yield loss caused by redundancy material defects, the choice of nets to be optimized at first is an important step in the process of layout optimization. This paper provides a new sensitivity model for a short net, which is net-based and reflects the size of the critical area between a single net and the nets around it. Since this model is based on a single net and includes the information of the surrounding nets, the critical area between the single net and surrounding nets can be reduced at the same time. In this way, the efficiency of layout optimization becomes higher. According to experimental observations~ this sensitivity model can be used to choose the position for optimization. Compared with the chip-area-based and basic- layout-based sensitivity models, our sensitivity model not only has higher efficiency, but also confirms that choosing the net to be optimized at first improves the design.
文摘This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although this criterion is considered a reference value for empirical and numerical calculations,some limitations of its basic simplifications have not been clarified yet.This research compares the analytical results obtained from the novel discontinuity layout optimization(DLO)method and the numerical solutions from the finite difference method(FDM).The limitations of the analytical solution are considered by comparing different DLO failure modes,thus allowing for the first time a critical evaluation of its scope and conditioning for implementation.Errors of up to 40%in the bearing capacity and unrealistic failure modes are the main issues in the analytical solution.The main aspects of the DLO method are also analyzed with an emphasis on the linearization of the rock failure criterion and the accuracy resulting from the discretization size.The analysis demonstrates DLO as a very efficient and accurate tool to address the pile tip bearing capacity,presenting considerable advantages over other methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61173088 and 61070143)the 111 Project(Grant No.B08038)
文摘In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.
基金financially supported by the Ministry of Education, Science, and Technology (MEST)the National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovationsupported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (No.20114010203040) grant funded by the Korean government’s Ministry of Knowledge Economy
文摘In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.