Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
Based on spatial climatic data of agriculture and the experiment data, the models of agro-ecological assessment of climate for agricultural suitability in this study were developed using the fuzzy mathematical method....Based on spatial climatic data of agriculture and the experiment data, the models of agro-ecological assessment of climate for agricultural suitability in this study were developed using the fuzzy mathematical method. Three coefficients, in- cluding the resource coefficient (Cr), the efficiency coefficient (Ce), and the utility co- efficient (K), were used in the models, which were calculated based on temperature, moisture, and sunshine duration data of Guanzhong region, Shaanxi Province. The results indicated that resource coefficient was higher in west of the region than that in east, and higher in south (especially in the Central Shaanxi Plain) than that in the Weibei plateau. The value of Cr changed from 6.5 to 9.2 from north to plain area. Spatial change of efficiency coefficient was obvious, lower in the northeast than in the central plain, and the value of Ce changed from 2.3 to 6.5 from the northeast to the central plain. As for utility coefficient, it was lower in northeastern part of the Weibei plateau and in southern mountain areas than that in the central plain, showing significant latitudinal zonality. Furthermore, the value of K increased from 0.35 to 0.78 from northeast to the central plain, and decreased from 0.78 to 0.53 from the central plain to southern mountain areas. These indicated that climate resource in the central plain region was more abundant and potential, compared with other regions. GuanZhong region was classified into three larger agricultural zones and three small independent zones, according to agro-ecological assessment. Light, heat and water resources should be made use of in an efficient way in spatial allo- cation of agricultural production. For example, water facilities should also be im- proved in Weibei plateau region where highly-qualified fruit should be enhanced and fruit processing industrial chain should be shaped. Large-scale production area of wheat should be increased in central irrigation region and more vegetable bases should be developed around large and medium-scale cities. Thanks for outstanding water conservation function, the three-dimensional agriculture including medicine and other sideline production should be developed in Qinling Mountains and the special- ized commercial agriculture should be accelerated in independent small zones, ac- cording to local conditions. In the research, different crop varieties were developed in corresponding regions as per current eco-climatic conditions.展开更多
[Objective] This study was to establish an optimized model for the allocation of agricultural fertilizer resources in Southern Xinjiang from the perspective of sustainable development.[Method] An optimized model for t...[Objective] This study was to establish an optimized model for the allocation of agricultural fertilizer resources in Southern Xinjiang from the perspective of sustainable development.[Method] An optimized model for the allocation of agricultural fertilizer resources was established based on their allocation structure.Combined with the actual agricultural production in Aksu areas of Southern Xinjiang,by establishing a rational evaluation index system,under the premise of considering the planting area constraints,the total water resources constraints and the security constraints of food production,we established the empirical optimal allocation model of the regional agricultural fertilizer resources in Aksu area of Southern Xinjiang.Moreover,we solved the model by using the search algorithm of computer and lingo programming.[Result] The increased economic benefit was near to 1.8 billion Yuan by adopting the optimal allocation methods,with a relative increment of about 34.4%.[Conclusion] Our results provided theoretical basis for achieving the sustainable development of agricultural economy in Southern Xinjiang.展开更多
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim...The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.展开更多
A GIS-based method was used to assess land suitability in the Qinling Mountains, Shaanxi Province of China through simultaneous consideration of physical features and current land use. Through interpretation of Landsa...A GIS-based method was used to assess land suitability in the Qinling Mountains, Shaanxi Province of China through simultaneous consideration of physical features and current land use. Through interpretation of Landsat TM images and extensive field visits the area was modeled into 40 land types in five altitudinal zones (valleys and gullies, hillsides and terraces, foothills, mid-mountain, and sub-alpine mountain). Then, a suitability score was assigned to five physical factors (climate, hydrology, topography, soil, and vegetation). Next, their integrated overall suitability value scores were compared with the observed land cover to determine whether it should be reallocated a new use. Results showed that the five suitability classes of agriculture, forest, grassland, farmland-woodland, and scrub-pasture had altitudinal stratification and a total of 1151 km2 (8.89%) of lands on the northern slopes of the Qinling Mountains had to be reallocated. To achieve this reallocation, 657 km2 of arable land should be reduced, and forest, grassland and scrub-pasture increased by 615 km2, 131 km2 and 405 km2, respectively. Implementation of these recommended land reallocations should help achieve suitable use of land resources and prevent land degradation.展开更多
The case study based on Qinling Mountains in Shaanxi Province of China, in virtue of the information from TM image, classifies the land types and analyzes their spatial and temporal differential law, and puts forward ...The case study based on Qinling Mountains in Shaanxi Province of China, in virtue of the information from TM image, classifies the land types and analyzes their spatial and temporal differential law, and puts forward three structural patterns of land types in mountainous areas, namely, spatial, quantitative and qualitative structures of mountainous land types. Furthermore, it has been noticed that the analysis of structural patterns can disclose the heterogeneity and orderliness of combination of land types, which can lay the theoretic foundation for comprehensively recognizing ecological characteristics and succession law of structure and function of land types. After the all-around comparative analysis, an optimal allocation of land use in Qinling Mountains has been put forward according to the principle of sustainable development and landscape ecology, which can lay the scientific foundation in practice for the structural adjustment and distribution optimization from the macro level to micro level.展开更多
This paper tries to integrate game theory, a very useful tool to resolve conflict phenomena, with optimal capital cost allocation issue in total emission control. First the necessity of allocating optimal capital cos...This paper tries to integrate game theory, a very useful tool to resolve conflict phenomena, with optimal capital cost allocation issue in total emission control. First the necessity of allocating optimal capital costs fairly and reasonably among polluters in total emission control was analyzed. Then the possibility of applying game theory to the issue of the optimal capital cost allocation was expounded. Next the cooperative N person game model of the optimal capital cost allocation and its solution ways including method based on Shapley value, least core method, weak least core methods, proportional least core method, CGA method, MCRS method and so on were delineated. Finally through application of these methods it was concluded that to apply game theory in the optimal capital cost allocation issue is helpful to implement the total emission control planning schemes successfully, to control pollution effectively, and to ensure sustainable development.展开更多
Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the sceni...Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the scenic spot and around its influencing area are focused on. It is found that the terrain, land use, nearby transport network and scenery point distribution have significant impact on the allocation of bicycle-sharing system. While the candidate bicycle-sharing stations installed at the inner scenic points, entrances/exits and metro stations are fixed, the ones installed at bus-stations and other passenger concentration buildings are adjustable. Aiming at minimizing the total cycling distance and overlapping rate, an optimization model is proposed and solved based on the idea of cluster concept and greedy heuristic. A revealed preference/stated preference (RP/SP) combined survey was conducted at Xuanwu Lake in Nanjing, China, to get an insight into the touring trip characteristics and bicycle-sharing tendency. The results reveal that 39.81% visitors accept a cycling distance of 1-3 km and 62.50% respondents think that the bicycle-sharing system should charge an appropriate fee. The sttrvey indicates that there is high possibility to carry out a bicycle-sharing system at Xuanwu Lake. Optimizing the allocation problem cluster by cluster rather than using an exhaustive search method significantly reduces the computing amount from O(2^43) to O(43 2). The 500 m-radius-coverage rate for the alternative optimized by 500 m-radius-cluster and 800 m-radius-cluster is 89.2% and 68.5%, respectively. The final layout scheme will provide decision makers engineering guidelines and theoretical support.展开更多
This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorit...This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality.展开更多
We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for alloca...We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.展开更多
To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to...To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.展开更多
Spark is a distributed data processing framework based on memory.Memory allocation is a focus question of Spark research.A good memory allocation scheme can effectively improve the efficiency of task execution and mem...Spark is a distributed data processing framework based on memory.Memory allocation is a focus question of Spark research.A good memory allocation scheme can effectively improve the efficiency of task execution and memory resource utilization of the Spark.Aiming at the memory allocation problem in the Spark2.x version,this paper optimizes the memory allocation strategy by analyzing the Spark memory model,the existing cache replacement algorithms and the memory allocation methods,which is on the basis of minimizing the storage area and allocating the execution area according to the demand.It mainly including two parts:cache replacement optimization and memory allocation optimization.Firstly,in the storage area,the cache replacement algorithm is optimized according to the characteristics of RDD Partition,which is combined with PCA dimension.In this section,the four features of RDD Partition are selected.When the RDD cache is replaced,only two most important features are selected by PCA dimension reduction method each time,thereby ensuring the generalization of the cache replacement strategy.Secondly,the memory allocation strategy of the execution area is optimized according to the memory requirement of Task and the memory space of storage area.In this paper,a series of experiments in Spark on Yarn mode are carried out to verify the effectiveness of the optimization algorithm and improve the cluster performance.展开更多
We have used the Yellow River Delta (Dongying section) as our study area to address the project of "Three Networks Greening" (TNG). With the use of GIS technology and from an ecological point of view, an optimal...We have used the Yellow River Delta (Dongying section) as our study area to address the project of "Three Networks Greening" (TNG). With the use of GIS technology and from an ecological point of view, an optimal allocation scheme of land resources is constructed and applied to guide the adjustment of land resources. Given this scheme, we have calculated that the area of land suitable for forest and shrubs without greening is 2256 km^2. Simultaneously, acting on the layout of the TNG project, afforestation site types are prepared and improved. Soil types, microrelief, salinity and underwater levels are combined as major classification factors and irrigation conditions as a reference to classify sites into eight types. In this way, land suitable for forest and grass is afforested given particular planting patterns. Finally, by overlaying this forestry site type map with the TNG plan map, some suggestions and strategies are proposed and used to direct the TNG project. An ecological oasis of the Yellow River Delta should be the result.展开更多
The issue of water scarcity highlights the importance of watershed management. A sound watershed manage- ment should make all water users share the incurred cost. This study analyzes the optimal allocation of watershe...The issue of water scarcity highlights the importance of watershed management. A sound watershed manage- ment should make all water users share the incurred cost. This study analyzes the optimal allocation of watershed management cost among different water users. As a consumable, water should be allocated to different users the amounts in which their marginal utilities (MUs) or marginal products (MPs) of water are equal. The value of MUs or MPs equals the water price that the watershed manager charges. When water is simultaneously used as consumable and non- consumable, the watershed manager produces the quantity of water in which the sum of MUs and/or MPs for the two types of uses equals the marginal cost of water production. Each water user should share the portion of watershed management cost in the percentage that his MU or MP accounts for the sum of MUs and/or MPs. Thus, the price of consumable water does not equal the marginal cost of water production even if there is no public good.展开更多
In developing countries, land productivity involves little market, where the agricultural land use is mainly determined by the food demands as well as the land suitability. The land use pattern will not ensure everywh...In developing countries, land productivity involves little market, where the agricultural land use is mainly determined by the food demands as well as the land suitability. The land use pattern will not ensure everywhere enough land for certain cropping if spatial allocation just according to land use suitability. To solve this problem, a subzone and a pre-allocation for each land use are added in spatial allocation module, and land use suitability and area optimi- zation module are incorporated to constitute a whole agricultural land use optimal allocation (ALUOA) system. The system is developed on the platform .Net 2005 using ArcGIS Engine (version 9.2) and C# language, and is tested and validated in Yili watershed of Xinjiang Region on the newly reclaimed area. In the case study, with the help of soil data obtained from 69 points sampled in the fieldwork in 2008, main river data supplied by the Department of Water Resources of Xinjiang Uygur Autonomous Region in China, and temperature data provided by Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, land use suitability on eight common crops are evaluated one by one using linear weighted summation method in the land use suitability model. The linear pro- gramming (LP) model in area optimization model succeeds to give out land area target of each crop under three scenarios. At last, the land use targets are allotted in space both with a six subzone file and without a subzone file. The resuits show that the land use maps with a subzone not only ensure every part has enough land for every crop, but also gives a more fragmental land use pattern, with about 87.99% and 135.92% more patches than the one without, while at the expense of loss between 15.30% and 19.53% in the overall suitability at the same time.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime...The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime of a reliability system with sub- systems consisting of components in parallel. The constraints are minimizing the total resources and the sizes of subsystems. In this system, each switching is independent with each other and works with probability p. Two optimization problems are studied by an incremental algorithm and dynamic programming technique respectively. The incremental algorithm proposed could obtain an approximate optimal solution, and the dynamic programming method could generate the optimal solution,展开更多
Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific...Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific regional and water conditions,to strengthen the constraints on water resources,the“three-step”adaptive management approach of“scheme design-scheme diagnosis-scheme optimization”of water resource allocation are adopted to facilitate the coordinated optimal allocation of water resources and industrial structure in the Beijing-Tianjin-Hebei regions.First,from the level of overall industry,a water resource allocation scheme for the regions is designed by applying the master-slave hierarchical mode and a bi-level optimal model to determine the ideal amount of water resource allocation for the regions and respective industries.Second,the diagnostic criteria of spatial balance,structural matching,and coordinated development are constructed to determine the rationality of the water resource allocation scheme.Then a benefit compensation function with water market transactions is developed,to adaptively adjust the water resource allocation scheme.Finally,the optimization and upgrading of industrial structure are promoted to improve water consumption efficiency and the coordinated development of the Beijing-Tianjin-Hebei regions.The study can provide reference for the Beijing-Tianjin-Hebei regions to realize the comprehensive optimal allocation of water resources in the regions and improve the adaptability of water resources and industrial structure optimization.展开更多
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
基金National Natural Science Foundation of China(4113074841101162+2 种基金4100137441101165)Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-QN304)~~
文摘Based on spatial climatic data of agriculture and the experiment data, the models of agro-ecological assessment of climate for agricultural suitability in this study were developed using the fuzzy mathematical method. Three coefficients, in- cluding the resource coefficient (Cr), the efficiency coefficient (Ce), and the utility co- efficient (K), were used in the models, which were calculated based on temperature, moisture, and sunshine duration data of Guanzhong region, Shaanxi Province. The results indicated that resource coefficient was higher in west of the region than that in east, and higher in south (especially in the Central Shaanxi Plain) than that in the Weibei plateau. The value of Cr changed from 6.5 to 9.2 from north to plain area. Spatial change of efficiency coefficient was obvious, lower in the northeast than in the central plain, and the value of Ce changed from 2.3 to 6.5 from the northeast to the central plain. As for utility coefficient, it was lower in northeastern part of the Weibei plateau and in southern mountain areas than that in the central plain, showing significant latitudinal zonality. Furthermore, the value of K increased from 0.35 to 0.78 from northeast to the central plain, and decreased from 0.78 to 0.53 from the central plain to southern mountain areas. These indicated that climate resource in the central plain region was more abundant and potential, compared with other regions. GuanZhong region was classified into three larger agricultural zones and three small independent zones, according to agro-ecological assessment. Light, heat and water resources should be made use of in an efficient way in spatial allo- cation of agricultural production. For example, water facilities should also be im- proved in Weibei plateau region where highly-qualified fruit should be enhanced and fruit processing industrial chain should be shaped. Large-scale production area of wheat should be increased in central irrigation region and more vegetable bases should be developed around large and medium-scale cities. Thanks for outstanding water conservation function, the three-dimensional agriculture including medicine and other sideline production should be developed in Qinling Mountains and the special- ized commercial agriculture should be accelerated in independent small zones, ac- cording to local conditions. In the research, different crop varieties were developed in corresponding regions as per current eco-climatic conditions.
基金Supported by National Natural Science Foundation of China(30960188)Natural Science Fund of Principal Program from Tarim University(TDZKSS09010)+1 种基金Key Principal Program from Tarim University(TDZKZD09001)Quality Engineering Program from TarimUniversity(TDZGTD09004&DZGKC09085)~~
文摘[Objective] This study was to establish an optimized model for the allocation of agricultural fertilizer resources in Southern Xinjiang from the perspective of sustainable development.[Method] An optimized model for the allocation of agricultural fertilizer resources was established based on their allocation structure.Combined with the actual agricultural production in Aksu areas of Southern Xinjiang,by establishing a rational evaluation index system,under the premise of considering the planting area constraints,the total water resources constraints and the security constraints of food production,we established the empirical optimal allocation model of the regional agricultural fertilizer resources in Aksu area of Southern Xinjiang.Moreover,we solved the model by using the search algorithm of computer and lingo programming.[Result] The increased economic benefit was near to 1.8 billion Yuan by adopting the optimal allocation methods,with a relative increment of about 34.4%.[Conclusion] Our results provided theoretical basis for achieving the sustainable development of agricultural economy in Southern Xinjiang.
基金the National Natural Science Foundation of China(52177074).
文摘The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach.
基金Project supported by the National Basic Research Program of China (No. 2006CB400505)the National Natural Science Foundation of China (No. 40171007).
文摘A GIS-based method was used to assess land suitability in the Qinling Mountains, Shaanxi Province of China through simultaneous consideration of physical features and current land use. Through interpretation of Landsat TM images and extensive field visits the area was modeled into 40 land types in five altitudinal zones (valleys and gullies, hillsides and terraces, foothills, mid-mountain, and sub-alpine mountain). Then, a suitability score was assigned to five physical factors (climate, hydrology, topography, soil, and vegetation). Next, their integrated overall suitability value scores were compared with the observed land cover to determine whether it should be reallocated a new use. Results showed that the five suitability classes of agriculture, forest, grassland, farmland-woodland, and scrub-pasture had altitudinal stratification and a total of 1151 km2 (8.89%) of lands on the northern slopes of the Qinling Mountains had to be reallocated. To achieve this reallocation, 657 km2 of arable land should be reduced, and forest, grassland and scrub-pasture increased by 615 km2, 131 km2 and 405 km2, respectively. Implementation of these recommended land reallocations should help achieve suitable use of land resources and prevent land degradation.
基金Key project on Knowledge Innovation of Chinese Academy of Sciences, KZCX2-310-05
文摘The case study based on Qinling Mountains in Shaanxi Province of China, in virtue of the information from TM image, classifies the land types and analyzes their spatial and temporal differential law, and puts forward three structural patterns of land types in mountainous areas, namely, spatial, quantitative and qualitative structures of mountainous land types. Furthermore, it has been noticed that the analysis of structural patterns can disclose the heterogeneity and orderliness of combination of land types, which can lay the theoretic foundation for comprehensively recognizing ecological characteristics and succession law of structure and function of land types. After the all-around comparative analysis, an optimal allocation of land use in Qinling Mountains has been put forward according to the principle of sustainable development and landscape ecology, which can lay the scientific foundation in practice for the structural adjustment and distribution optimization from the macro level to micro level.
文摘This paper tries to integrate game theory, a very useful tool to resolve conflict phenomena, with optimal capital cost allocation issue in total emission control. First the necessity of allocating optimal capital costs fairly and reasonably among polluters in total emission control was analyzed. Then the possibility of applying game theory to the issue of the optimal capital cost allocation was expounded. Next the cooperative N person game model of the optimal capital cost allocation and its solution ways including method based on Shapley value, least core method, weak least core methods, proportional least core method, CGA method, MCRS method and so on were delineated. Finally through application of these methods it was concluded that to apply game theory in the optimal capital cost allocation issue is helpful to implement the total emission control planning schemes successfully, to control pollution effectively, and to ensure sustainable development.
基金Project(51208261)supported by the National Natural Science Foundation of ChinaProject(12YJCZH062)supported by the Ministry of Education of Humanities and Social Science of ChinaProject(30920140132033)supported by the Fundamental Research Funds for the Central Universities,China
文摘Bicycle-sharing system is considered as a green option to provide a better connection between scenic spots and nearby metro/bus stations. Allocating and optimizing the layout of bicycle-sharing system inside the scenic spot and around its influencing area are focused on. It is found that the terrain, land use, nearby transport network and scenery point distribution have significant impact on the allocation of bicycle-sharing system. While the candidate bicycle-sharing stations installed at the inner scenic points, entrances/exits and metro stations are fixed, the ones installed at bus-stations and other passenger concentration buildings are adjustable. Aiming at minimizing the total cycling distance and overlapping rate, an optimization model is proposed and solved based on the idea of cluster concept and greedy heuristic. A revealed preference/stated preference (RP/SP) combined survey was conducted at Xuanwu Lake in Nanjing, China, to get an insight into the touring trip characteristics and bicycle-sharing tendency. The results reveal that 39.81% visitors accept a cycling distance of 1-3 km and 62.50% respondents think that the bicycle-sharing system should charge an appropriate fee. The sttrvey indicates that there is high possibility to carry out a bicycle-sharing system at Xuanwu Lake. Optimizing the allocation problem cluster by cluster rather than using an exhaustive search method significantly reduces the computing amount from O(2^43) to O(43 2). The 500 m-radius-coverage rate for the alternative optimized by 500 m-radius-cluster and 800 m-radius-cluster is 89.2% and 68.5%, respectively. The final layout scheme will provide decision makers engineering guidelines and theoretical support.
文摘This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality.
文摘We present a novel system productivity simulation and optimization modeling framework in which equipment availability is a variable in the expected productivity function of the system. The framework is used for allocating trucks by route according to their operating performances in a truck-shovel system of an open-pit mine, so as to maximize the overall productivity of the fleet. We implement the framework in an originally designed and specifically developed simulator-optimizer software tool. We make an application on a real open-pit mine case study taking into account the stochasticity of the equipment behavior and environment. The total system production values obtained with and without considering the equipment reliability, availability and maintainability (RAM) characteristics are compared. We show that by taking into account the truck and shovel RAM aspects, we can maximize the total production of the system and obtain specific information on the production availability and productivity of its components.
基金funded by the Six Talent Peaks Project in Jiangsu Province(No.KTHY-052)the National Natural Science Foundation of China(No.61971245)+1 种基金the Science and Technology program of Nantong(Contract No.JC2018048)the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(No.KJS1858).
文摘To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.
文摘Spark is a distributed data processing framework based on memory.Memory allocation is a focus question of Spark research.A good memory allocation scheme can effectively improve the efficiency of task execution and memory resource utilization of the Spark.Aiming at the memory allocation problem in the Spark2.x version,this paper optimizes the memory allocation strategy by analyzing the Spark memory model,the existing cache replacement algorithms and the memory allocation methods,which is on the basis of minimizing the storage area and allocating the execution area according to the demand.It mainly including two parts:cache replacement optimization and memory allocation optimization.Firstly,in the storage area,the cache replacement algorithm is optimized according to the characteristics of RDD Partition,which is combined with PCA dimension.In this section,the four features of RDD Partition are selected.When the RDD cache is replaced,only two most important features are selected by PCA dimension reduction method each time,thereby ensuring the generalization of the cache replacement strategy.Secondly,the memory allocation strategy of the execution area is optimized according to the memory requirement of Task and the memory space of storage area.In this paper,a series of experiments in Spark on Yarn mode are carried out to verify the effectiveness of the optimization algorithm and improve the cluster performance.
基金supported by the National Science Foundation of China (Grant No.40771172)the Main Direction Program of Knowledge In-novation of the Chinese Academy of Sciences (kzcx2-yw-308)
文摘We have used the Yellow River Delta (Dongying section) as our study area to address the project of "Three Networks Greening" (TNG). With the use of GIS technology and from an ecological point of view, an optimal allocation scheme of land resources is constructed and applied to guide the adjustment of land resources. Given this scheme, we have calculated that the area of land suitable for forest and shrubs without greening is 2256 km^2. Simultaneously, acting on the layout of the TNG project, afforestation site types are prepared and improved. Soil types, microrelief, salinity and underwater levels are combined as major classification factors and irrigation conditions as a reference to classify sites into eight types. In this way, land suitable for forest and grass is afforested given particular planting patterns. Finally, by overlaying this forestry site type map with the TNG plan map, some suggestions and strategies are proposed and used to direct the TNG project. An ecological oasis of the Yellow River Delta should be the result.
文摘The issue of water scarcity highlights the importance of watershed management. A sound watershed manage- ment should make all water users share the incurred cost. This study analyzes the optimal allocation of watershed management cost among different water users. As a consumable, water should be allocated to different users the amounts in which their marginal utilities (MUs) or marginal products (MPs) of water are equal. The value of MUs or MPs equals the water price that the watershed manager charges. When water is simultaneously used as consumable and non- consumable, the watershed manager produces the quantity of water in which the sum of MUs and/or MPs for the two types of uses equals the marginal cost of water production. Each water user should share the portion of watershed management cost in the percentage that his MU or MP accounts for the sum of MUs and/or MPs. Thus, the price of consumable water does not equal the marginal cost of water production even if there is no public good.
基金Under the auspices of National Natural Science Foundation of China (No. 41001108, 41071065)Beijing Municipal Natural Science Foundation (No. 9113029)
文摘In developing countries, land productivity involves little market, where the agricultural land use is mainly determined by the food demands as well as the land suitability. The land use pattern will not ensure everywhere enough land for certain cropping if spatial allocation just according to land use suitability. To solve this problem, a subzone and a pre-allocation for each land use are added in spatial allocation module, and land use suitability and area optimi- zation module are incorporated to constitute a whole agricultural land use optimal allocation (ALUOA) system. The system is developed on the platform .Net 2005 using ArcGIS Engine (version 9.2) and C# language, and is tested and validated in Yili watershed of Xinjiang Region on the newly reclaimed area. In the case study, with the help of soil data obtained from 69 points sampled in the fieldwork in 2008, main river data supplied by the Department of Water Resources of Xinjiang Uygur Autonomous Region in China, and temperature data provided by Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, land use suitability on eight common crops are evaluated one by one using linear weighted summation method in the land use suitability model. The linear pro- gramming (LP) model in area optimization model succeeds to give out land area target of each crop under three scenarios. At last, the land use targets are allotted in space both with a six subzone file and without a subzone file. The resuits show that the land use maps with a subzone not only ensure every part has enough land for every crop, but also gives a more fragmental land use pattern, with about 87.99% and 135.92% more patches than the one without, while at the expense of loss between 15.30% and 19.53% in the overall suitability at the same time.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金supported by the National Natural Science Foundation of China(7117217271101158+3 种基金71272058)the Program for New Century Excellent Talents in University(NCET-10-0043)the Key Project Cultivation Fund of the Scientific and Technical Innovation Program of Beijing Institute of Technology(2011CX01001)the Special Fund of International Science and Technology Cooperation Program of Beijing Institute of Technology(GZ2014215101)
文摘The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime of a reliability system with sub- systems consisting of components in parallel. The constraints are minimizing the total resources and the sizes of subsystems. In this system, each switching is independent with each other and works with probability p. Two optimization problems are studied by an incremental algorithm and dynamic programming technique respectively. The incremental algorithm proposed could obtain an approximate optimal solution, and the dynamic programming method could generate the optimal solution,
基金supported by the Humanities and Social Science Foundation of Ministry of Education“Research on the Optimal Adaptability of Basin Initial Water Rights and Industrial Structures under the Rigid Constraints of Water Resource”[Grant number.21YJCZH176]Beijing Municipal Natural Science Foundation of China“Research on Bi-directional Optimal Adaptability of Water Resource and Industrial Structures under the Coordinated Development of the Beijing-Tianjin-Hebei Region”(Grant number.9202005)+1 种基金the Humanities and Social Science Foundation of Ministry of Education“Research on Complex System Model of Industrial Water Rights Trading Based on Experimental Economics and Dynamic Simulation under Dual Control Action”[Grant number.20YJCZH095]General Projects of Social Science Plan of Beijing Municipal Education Commission[Grant number.SM201910009007].
文摘Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific regional and water conditions,to strengthen the constraints on water resources,the“three-step”adaptive management approach of“scheme design-scheme diagnosis-scheme optimization”of water resource allocation are adopted to facilitate the coordinated optimal allocation of water resources and industrial structure in the Beijing-Tianjin-Hebei regions.First,from the level of overall industry,a water resource allocation scheme for the regions is designed by applying the master-slave hierarchical mode and a bi-level optimal model to determine the ideal amount of water resource allocation for the regions and respective industries.Second,the diagnostic criteria of spatial balance,structural matching,and coordinated development are constructed to determine the rationality of the water resource allocation scheme.Then a benefit compensation function with water market transactions is developed,to adaptively adjust the water resource allocation scheme.Finally,the optimization and upgrading of industrial structure are promoted to improve water consumption efficiency and the coordinated development of the Beijing-Tianjin-Hebei regions.The study can provide reference for the Beijing-Tianjin-Hebei regions to realize the comprehensive optimal allocation of water resources in the regions and improve the adaptability of water resources and industrial structure optimization.