Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different ...Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.展开更多
The effect of oral L-ornithine hydrochloride (0.1 g/kg BW) on energy expenditure during a rest period from 120 to 180 min after resistance exercise was evaluated by indirect calorimetry. Healthy male subjects who have...The effect of oral L-ornithine hydrochloride (0.1 g/kg BW) on energy expenditure during a rest period from 120 to 180 min after resistance exercise was evaluated by indirect calorimetry. Healthy male subjects who have no habit of resistance training underwent resistance exercise (chest press, lat pulldown, leg press, shoulder press, leg extension, and leg curl), with 3 sets of each exercise and 10 repetitions in each set at 90-s intervals, 30 min after ingestion of ornithine or placebo. Plasma ornithine levels immediately after, and 120 and 180 min after, resistance exercise were significantly greater after ingestion of ornithine than of placebo (Treatment: F = 347.1, P p2 = 0.95;Interaction: F = 160.7, P p2 = 0.95), but no significant difference in serum growth hormone levels was observed between the two treatments (Treatment: F = 0.1, P = 0.751, ηp2 = 0.01;Time: F = 1.7, P = 0.229, ηp2 = 0.16;Interaction: F = 2.4, P = 0.155, ηp2 = 0.21). Although there was no between-treatment difference in energy expenditure during the rest period 120 to 180 min after resistance exercise (Treatment: F = 0.1, P = 0.718, ηp2 = 0.02;Time: F = 0.1, P = 0.767, ηp2 = 0.01;Interaction: F = 0.1, P = 0.112, ηp2 = 0.26), with ornithine ingestion carbohydrate oxidation was significantly greater than with placebo from 170 to 180 min after exercise (Treatment: F = 0.8, P = 0.383, ηp2 = 0.09;Time: F = 9.7, P = 0.013, ηp2 = 0.52;Interaction: F = 5.8, P = 0.039, ηp2 = 0.39). Moreover, 180 min after exercise, serum free fatty acid levels after ornithine ingestion were lower than after placebo (Treatment: F = 0.3, P = 0.602, ηp2 = 0.03;Time: F = 34.6, P p2 = 0.79;Interaction: F = 5.6, P = 0.042, ηp2 = 0.38). A similar trend in 3-hydroxybutylate was observed. In conclusion, ornithine ingestion before resistance exercise may enhance post-exercise carbohydrate oxidation without changing total energy expenditure.展开更多
基金supported by a grant from the National Natural Science Foundation of China (NSFC) No. 81070826/30872886/30400497Sponsored by Shanghai Rising-Star Program No. 09QA1403700+1 种基金funded by Shanghai Leading Academic Discipline Project (Project Number: S30206)the Science and Technology Commission of Shanghai (08DZ2271100)
文摘Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.
文摘The effect of oral L-ornithine hydrochloride (0.1 g/kg BW) on energy expenditure during a rest period from 120 to 180 min after resistance exercise was evaluated by indirect calorimetry. Healthy male subjects who have no habit of resistance training underwent resistance exercise (chest press, lat pulldown, leg press, shoulder press, leg extension, and leg curl), with 3 sets of each exercise and 10 repetitions in each set at 90-s intervals, 30 min after ingestion of ornithine or placebo. Plasma ornithine levels immediately after, and 120 and 180 min after, resistance exercise were significantly greater after ingestion of ornithine than of placebo (Treatment: F = 347.1, P p2 = 0.95;Interaction: F = 160.7, P p2 = 0.95), but no significant difference in serum growth hormone levels was observed between the two treatments (Treatment: F = 0.1, P = 0.751, ηp2 = 0.01;Time: F = 1.7, P = 0.229, ηp2 = 0.16;Interaction: F = 2.4, P = 0.155, ηp2 = 0.21). Although there was no between-treatment difference in energy expenditure during the rest period 120 to 180 min after resistance exercise (Treatment: F = 0.1, P = 0.718, ηp2 = 0.02;Time: F = 0.1, P = 0.767, ηp2 = 0.01;Interaction: F = 0.1, P = 0.112, ηp2 = 0.26), with ornithine ingestion carbohydrate oxidation was significantly greater than with placebo from 170 to 180 min after exercise (Treatment: F = 0.8, P = 0.383, ηp2 = 0.09;Time: F = 9.7, P = 0.013, ηp2 = 0.52;Interaction: F = 5.8, P = 0.039, ηp2 = 0.39). Moreover, 180 min after exercise, serum free fatty acid levels after ornithine ingestion were lower than after placebo (Treatment: F = 0.3, P = 0.602, ηp2 = 0.03;Time: F = 34.6, P p2 = 0.79;Interaction: F = 5.6, P = 0.042, ηp2 = 0.38). A similar trend in 3-hydroxybutylate was observed. In conclusion, ornithine ingestion before resistance exercise may enhance post-exercise carbohydrate oxidation without changing total energy expenditure.