期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Orbital Elements Ephemerides and Interfaces Design of LEO Satellites
1
作者 Shanchuan FANG Lan DU +2 位作者 Yunpeng GAO Peiyuan ZHOU Zejun LIU 《Journal of Geodesy and Geoinformation Science》 2019年第4期44-52,共9页
Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important ... Low earth orbit satellites,with unique advantages,are prosperous types of navigation augmentation satellites for the GNSS satellites constellations.The broadcast ephemeris element needs to be designed as an important index of the augmented LEOs.The GPS ephemerides of 16/18 elements cannot be directly applied to the LEOs because of the poor fitting accuracies in along-track positional component.Besides,the ill-conditioned problem of the normal-matrix exists in fitting algorithm due to the small eccentricity of the LEO orbits.Based on the nonsingular orbital elements,5 sets of ephemerides with element numbers from 16 to 19 were designed respectively by adding or modifying orbital elements magnifying the along-track and radial positional components.The fitting experiments based on the LEO of 300 to 1500 km altitudes show that the fitting UREs of the proposed 16/17/18/18*/19-element ephemerides are better than 10/6/4/5/2.5 cm,respectively.According to the dynamical range of the fitting elements,the interfaces were designed for the 5 sets of ephemerides.The effects of data truncation on fitting UREs are at millimeter level.The total bits are 329/343/376/379/396,respectively.29/15 bits are saved for the 16/17-element ephemerides compared with the GPS16 ephemeris,while 64/61/41 bits can be saved for the 18/18*/19-element ephemerides compared with the GPS18 elements ephemeris. 展开更多
关键词 LEO satellites broadcast ephemeris nonsingular orbital elements of the first kind quantization unit
下载PDF
Modified filter for mean elements estimation with state jumping
2
作者 YU Yanjun YUE Chengfei +2 位作者 LI Huayi WU Yunhua CHEN Xueqin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期999-1012,共14页
To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root u... To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method. 展开更多
关键词 unscented Kalman filter mean orbital elements(MOEs)estimation state jumping detection nonlinear system
下载PDF
Study on relative orbital configuration in satellite formation flying 被引量:10
3
作者 JunfengLi XinMeng YunfengGao XiangLi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第1期87-94,共8页
In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain t... In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J<SUB>2</SUB> perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of non-perturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal. These shapes can be lines, ellipses or distorted closed curves. Secondly, on the basis of the analysis of J<SUB>2</SUB> effect on relative orbital configurations, we find out that J<SUB>2</SUB> effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J<SUB>2</SUB> perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J<SUB>2</SUB> effect. The relationship of relative orbital elements and J<SUB>2</SUB> effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J<SUB>2</SUB> effect. The results show that the minimum relation perturbation conditions can reduce the J<SUB>2</SUB> effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying. 展开更多
关键词 Satellite formation flying orbital element Relative orbital configuration SIMULATION PERTURBATION
下载PDF
Solution set on the natural satellite formation orbits under first-order earth's non-spherical perturbation 被引量:1
4
作者 Humei Wang Wei Yang Junfeng Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期503-510,共8页
Using the reference orbital element approach, the precise governing equations for the relative motion of formation flight are formulated. A number of ideal formations with respect to an elliptic orbit can be designed ... Using the reference orbital element approach, the precise governing equations for the relative motion of formation flight are formulated. A number of ideal formations with respect to an elliptic orbit can be designed based on the relative motion analysis from the equations. The features of the oscillating reference orbital elements are studied by using the perturbation theory. The changes in the relative orbit under perturbation are divided into three categories, termed scale enlargement, drift and distortion respectively. By properly choosing the initial mean orbital elements for the leader and follower satellites, the deviations from originally regular formation orbit caused by the perturbation can be suppressed. Thereby the natural formation is set up. It behaves either like non-disturbed or need little control to maintain. The presented reference orbital element approach highlights the kinematics properties of the relative motion and is convenient to incorporate the results of perturbation analysis on orbital elements. This method of formation design has advantages over other methods in seeking natural formation and in initializing formation. 展开更多
关键词 orbital mechanics . Satellite formation flight .orbital elements . Reference orbital elements . Perturbation
下载PDF
COMPARISON OF TWO METHODS IN SATELLITE FORMATION FLYING 被引量:1
5
作者 高云峰 宝音贺西 李俊峰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第8期902-908,共7页
Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire'... Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire' s (C-W's) equations, which describe the relative motion between two satellites. But according to some special examples and qualitative analysis , neither the initial parameters nor the period of the solution of C-W' s equations accord with the actual situation, and the conservation of energy is no longer held. A new method developed from orbital element description of single satellite , named relative orbital element method ( ROEM) , was introduced. This new method, with clear physics conception and wide application range, overcomes the limitation of C-W s equation , and the periodic solution is a natural conclusion. The simplified equation of the relative motion is obtained when the eccentricity of the main satellite is small. Finally, the results of the two methods (C-W' s equation and ROEM) are compared and the limitations of C-W s equations are pointed out and explained. 展开更多
关键词 satellite formation flying relative motion C-W' s equation relative orbital element method periodic solution
下载PDF
USEFUL RELATIVE MOTION DESCRIPTION METHOD FOR PERTURBATIONS ANALYSIS IN SATELLITEFORMATION FLYING
6
作者 孟鑫 李俊峰 +1 位作者 高云峰 MA Xing-rui 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第11期1464-1474,共11页
A set of parameters called relative orbital elements were defined to describe the relative motion of the satellites in the formation flying. With the help of these parameters, the effect of the perturbations on the re... A set of parameters called relative orbital elements were defined to describe the relative motion of the satellites in the formation flying. With the help of these parameters, the effect of the perturbations on the relative orbit trajectory and geometric properties of satellite formation can be easily analyzed. First, the relative orbital elements are derived, and pointed out: if the eccentricity of the leading satellite is a small value, the relative orbit trajectory is determined by the intersection between an elliptic cylinder and a plane in the leading satellite orbit frame reference; and the parameters that describe the elliptic cylinder and the plane can be used to obtain the relative orbit trajectory and the relative orbital elements. Second, by analyzing the effects of gravitational perturbations on the relative orbit using the relative orbital elements,it is found that the propagation of a relative orbit consists of two parts : one is the drift of the elliptic cylinder; and the other is the rotation of the plane resulted from the rotation of the normal of the plane. Meanwhile, the analytic formulae for the drift and rotation rates of a relative trajectory under gravitational perturbations are presented. Finally, the relative orbit trajectory and the corresponding changes were analyzed with respect to the J2 perturbation. 展开更多
关键词 satellite formation flying relative orbital element gravitational perturbation drift rate rotation rate
下载PDF
Elliptical formation control based on relative orbit elements 被引量:3
7
作者 Yin Jianfeng Han Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1554-1567,共14页
A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse... A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method. 展开更多
关键词 Elliptical formation control Formation flying Fuel optimal Impulsive control Relative orbit elements
原文传递
Linearized relative motion equations through orbital element differences for general Keplerian orbits 被引量:1
8
作者 Zhaohui Dang Hao Zhang 《Astrodynamics》 2018年第3期201-215,共15页
A new formulation of the orbital element-based relative motion equations is developed for general Keplerian orbits.This new solution is derived by performing a Taylor expansion on the Cartesian coordinates in the rota... A new formulation of the orbital element-based relative motion equations is developed for general Keplerian orbits.This new solution is derived by performing a Taylor expansion on the Cartesian coordinates in the rotating frame with respect to the orbital elements.The resulted solution is expressed in terms of two different sets of orbital elements.The first one is the classical orbital elements and the second one is the nonsingular orbital elements.Among of them,however,the semi-latus rectum and true anomaly are used due to their generality,rather than the semi-major axis and mean anomaly that are used in most references.This specific selection for orbital elements yields a new solution that is universally applicable to elliptic,parabolic and hyperbolic orbits.It is shown that the new orbital element-based relative motion equations are equivalent to the Tschauner–Hempel equations.A linear map between the initial orbital element differences and the integration constants associated with the solution of the Tschauner–Hempel equations is constructed.Finally,the presented solution is validated through comparison with a high-fidelity numerical orbit propagator.The numerical results demonstrate that the new solution is computationally effective;and the result is able to match the accuracy that is required for linear propagation of spacecraft relative motion over a broad range of Keplerian orbits. 展开更多
关键词 relative motion Keplerian orbits orbital element linearized equations
原文传递
Formation ight design for a LISA-like gravitational wave observatory via Cascade optimization 被引量:10
9
作者 Chihang Yang Hao Zhang 《Astrodynamics》 CSCD 2019年第2期155-171,共17页
Laser Interferometer Space Antenna(LISA)is a project to detect and measure gravitational waves.The project has three spacecraft ying in a formation of near equilateral triangle in a heliocentric orbit trailing Earth.M... Laser Interferometer Space Antenna(LISA)is a project to detect and measure gravitational waves.The project has three spacecraft ying in a formation of near equilateral triangle in a heliocentric orbit trailing Earth.Many sources of perturbations cause the con guration to deviate from the nominal.This paper studies the formation design problem for a LISA-like mission by considering ephemeris-based dynamics.This type of mission is well-known for addressing several strict mission requirements under the realistic dynamics.The problem is formulated as optimizing multiple mission performance indices.It is observed that some indices are correlated with each other,whereas some indices have di erent sensitivities with respect to the semi-major axis.Therefore,the problem is transformed into a two-step cascade single-objective optimization,in which the optimal solution of the rst optimization problem is fed to the second optimization as initial value.In addition,the major perturbing celestial bodies are picked up to make a simpli ed but accurate enough dynamics to speed up the optimization.Numerical examples verify the analysis and show the e ectiveness of the optimization procedure.The in uences of mission lifetime and spatial scales on the optimal solutions are also presented. 展开更多
关键词 modified equinoctial orbit elements LISA spacecraft formation fight gravitational wave observatory Monte-Carlo multi-objective optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部