We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic str...We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic structures,Fermi-surface quantum fluctuations,as well as phonon properties of the antiferromagnetic kagome metal FeGe.It is found that charge density wave emerges in such a system due to a subtle cooperation between electron-electron interactions and electron–phonon couplings,which gives rise to an unusual scenario of interaction-triggered phonon instabilities,and eventually yields a charge density wave(CDW)state.We further show that,in the CDW phase,the ground-state current density distribution exhibits an intriguing star-of-David pattern,leading to flux density modulation.The orbital fluxes(or current loops)in this system emerge as a result of the subtle interplay between magnetism,lattice geometries,charge order,and spin-orbit coupling(SOC),which can be described by a simple,yet universal,tight-binding theory including a Kane-Mele-type SOC term and a magnetic exchange interaction.We further study the origin of the peculiar step-edge states in FeGe,which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material.展开更多
Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort...Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.展开更多
We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding cent...We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.展开更多
Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical pr...Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
Orbital angular momentum(OAM)has the characteristics of mutual orthogonality between modes,and has been applied to underwater wireless optical communication(UWOC)systems to increase the channel capacity.In this work,w...Orbital angular momentum(OAM)has the characteristics of mutual orthogonality between modes,and has been applied to underwater wireless optical communication(UWOC)systems to increase the channel capacity.In this work,we propose a diffractive deep neural network(DDNN)based OAM mode recognition scheme,where the DDNN is trained to capture the features of the intensity distribution of the OAM modes and output the corresponding azimuthal indices and radial indices.The results show that the proposed scheme can recognize the azimuthal indices and radial indices of the OAM modes accurately and quickly.In addition,the proposed scheme can resist weak oceanic turbulence(OT),and exhibit excellent ability to recognize OAM modes in a strong OT environment.The DDNN-based OAM mode recognition scheme has potential applications in UWOC systems.展开更多
A new flexible tether-net space robotic system used to capture space debris is presented in this paper. With a mass point assumption, a dynamic model of the tether-net system was established in orbital frame by applyi...A new flexible tether-net space robotic system used to capture space debris is presented in this paper. With a mass point assumption, a dynamic model of the tether-net system was established in orbital frame by applying Lagrange Equations. In order to investigate the net in-plane trajectories after being cast, the non-controlled R-bar and V-bar captures were simulated with ignoring the out-of-plane libration, and the effect of in-plane libration on the trajectories of the capture net was demonstrated by simulation results. With an effort to damp the in-plane libration, the control scheme based on tether tension was investigated, then an integrated control scheme was proposed by introducing thrusters into the system, and the nonlinear close-loop dynamics was linearised by feedforward strategy. Simulation results show that the feedforward controller is effective for in-plane libration damping and enables the capture net to track an expected trajectory.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
This paper theoretically investigates the orbital magnetization of electron-doped (n-type) semiconductor het-erostructures and of hole-doped (p-type) bulk semiconductors, which are respectively described by a two-...This paper theoretically investigates the orbital magnetization of electron-doped (n-type) semiconductor het-erostructures and of hole-doped (p-type) bulk semiconductors, which are respectively described by a two-dimensional electron/hole Hamiltonian with both the included Rashba spin-orbit coupling and Zeeman splitting terms. It is the Zeeman splitting, rather than the Rashba spin-orbit coupling, that destroys the time-reversal symmetry of the semiconductor systems and results in nontrivial orbital magnetization. The results show that the magnitude of the orbital magnetization per hole and the Hall conductance in the p-type bulk semiconductors are about 10^-2-10^-1 effective Bohr magneton and 10^-1-1 e^2/h, respectively. However, the orbital magnetization per electron and the Hall conductance in the n-type semiconductor heterostructures are too small to be easily observed in experiment.展开更多
Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and foun...Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and found to be degenerate, which confirms the presence of the coexistent phases observed experimentally. We clearly show that due to the inherent frustration, the ground state of the system only with the superexchange interaction is degenerate; while the Jahn-Teller distortion, especially the anharmonic effect, stabilizes the orbital ordered phase at about 23% in the x2-y2 orbit and at 77% in the 3z2-r2 orbit. Meanwhile the magnetic moment of Cu is considerably reduced to 0.56μB, and magnetic coupling strengths are highly anisotropic, Jx/Jxy ≈ 18. These results are in good agreement with the experiments, implying that the anharmonic Jahn-Teller effect plays an essential role in stabilising the orbital ordered ground state of KCuF3.展开更多
Structural and magnetic properties are investigated for Fe1-xMnxV2O4 (0≤ x ≤ 1) spinels. As orbital-active Fe^2+ is substituted with Mn^2+, the cubie-to-tetragonM transition TsI and the tetragonal-to-orthorhombi...Structural and magnetic properties are investigated for Fe1-xMnxV2O4 (0≤ x ≤ 1) spinels. As orbital-active Fe^2+ is substituted with Mn^2+, the cubie-to-tetragonM transition TsI and the tetragonal-to-orthorhombic transition Ts2 gradually decrease. These structural transitions originate from the Fe^2+ ferro-orbital order (F-OO). Below Yafet-Kittel (YK) magnetic transition TN2, V^3+ orbital order (V-OO) plays an important role on global structure. Here x = 0.6 is a critical point. Fe^2+ F-OO and V^3+ F-OO coexist for 0 ≤ x ≤ 0.5. For x≥ 0.6, the orbital pattern of V^3+ is antiferro (AF)-00, and Fe^2+ F-OO disappears. Structural transition Ts3, accompanied by YK magnetic transition TN2, decreases initially, and then increases at x = 0.6. A scenario for the complex phase diagram arising from the cooperation or competition of Fe^2+ and V^3+ orbitals is proposed.展开更多
The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,th...The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect.However,few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque.Here,we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures.A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm^(-2))(1 Oe=79.5775 A·m^(-1)).The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106A·cm^(-2).Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.展开更多
The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic prop...The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic properties of the NiFe compound. Polarized spin within the framework of the ferromagnetic state between magnetic ions is considered. Also, magnetic moments considered to lie along (001) axes are computed. The Monte Carlo simulation is used to study the magnetic properties of NiFe. The transition temperature To, hysteresis loop, coercive field and remanent magnetization of the NiFe compound are obtained using the Monte Carlo simulation.展开更多
Dear Editor,Transorbital penetrating injury is one emergency faced by ophthalmologists during primary care that requires special attention because it can lead to serious ophthalmic and neurological sequela.Of all head...Dear Editor,Transorbital penetrating injury is one emergency faced by ophthalmologists during primary care that requires special attention because it can lead to serious ophthalmic and neurological sequela.Of all head injuries, intracranial penetrating injuries occur at a low rate of 0.4%[1], and transorbital-cranial penetrating injuries are even more rare, but do occur more frequently in young children than in adults[2-3].展开更多
There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute thre...There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute three-stage hierarchy of particles, atoms, and gravitational systems. Below 1/c waves are dissociated into strands and neutrinos are separated as points of charge. The electron and positron are single strands with opposed helical turns. Protons and neutrons have a nucleus of positrinos and negatrinos surrounded by concentric shells of strands in 2"~ resonance. The orbital strands reverberate into space creating a field with gravitational and electromagnetic aspects. The orbital system defines matter, energy, motion, and time based on composition. The three stages have a constant field content but differ by field density and components.展开更多
We consider the effect of a magnetic field on the motion of an atomic electron in its orbit. The usual treatment deals with the change in magnetic dipole moment assuming the electron's speed changes but the radius...We consider the effect of a magnetic field on the motion of an atomic electron in its orbit. The usual treatment deals with the change in magnetic dipole moment assuming the electron's speed changes but the radius of its orbit remains unchanged. We derive the change in the magnetic dipole moment allowing both the speed and the radius to change. The cases of fixed radius on one hand and of fixed speed on the other are treated as special cases of our general case.展开更多
AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This pros...AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This prospective,randomized,equivalence,controlled trial was conducted at two institutes.The equivalent margin was±10%.The sample size for the equivalence trial was 174 participants per group.Patients who were eligible for enucleations received either Medpor or 3DP-PE implants based on a randomized block of six.The surgeries were performed by five oculoplastic surgeons.The assessor and patients were masked.The magnetic resonance imaging(MRI)of the orbit was performed at least 6mo after operation and the fibrovascular ingrowth was analyzed using the Image J software.Follow-up continued at least 1y after surgery.The intention to treat and per protocol approaches were used.RESULTS:Totally 128 patients met the criteria in the report.Fifty Medpor and 553DP-PE cases completed the trial.The most common cause of blindness was trauma.The mean follow-up times of Medpor and 3DP-PE were 33 and 40mo respectively.The exposure rate was not statistically significant between two groups(6.0%and 7.3%),P<0.05,95%CI(-9.8%,+12.0%).The success rates were 94%(Medpor)and 92.7%(3DP-PE).No postoperative infection was reported.Nine patients had MRI tests and two had implant exposures with 66.3% enhancement at 75mo(Medpor)and 58% enhancement at 57mo(3DP-PE)postoperatively.CONCLUSION:There is no statistically significant difference in exposure rate and success rate between Medpor and 3DP-PE in enucleation in the report.However,we cannot conclude that they are equivalent in terms of the exposure rate and success rate because the 95%CI is wider than±10%.The infection rate is equivalent in both groups.展开更多
The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele...The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.展开更多
Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstruct...Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12174257)the National Key R&D program of China(Grant No.2020YFA0309601)+1 种基金the Science and Technology Commission of the Shanghai Municipality(Grant No.21JC1405100)the Start-Up Grant of ShanghaiTech University。
文摘We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic structures,Fermi-surface quantum fluctuations,as well as phonon properties of the antiferromagnetic kagome metal FeGe.It is found that charge density wave emerges in such a system due to a subtle cooperation between electron-electron interactions and electron–phonon couplings,which gives rise to an unusual scenario of interaction-triggered phonon instabilities,and eventually yields a charge density wave(CDW)state.We further show that,in the CDW phase,the ground-state current density distribution exhibits an intriguing star-of-David pattern,leading to flux density modulation.The orbital fluxes(or current loops)in this system emerge as a result of the subtle interplay between magnetism,lattice geometries,charge order,and spin-orbit coupling(SOC),which can be described by a simple,yet universal,tight-binding theory including a Kane-Mele-type SOC term and a magnetic exchange interaction.We further study the origin of the peculiar step-edge states in FeGe,which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 61871234)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.
文摘We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic(EM)waves with spin angular momentum(SAM)and orbital angular momentum(OAM)using micromagnetic simulations.First,the guiding centers of the skyrmion driven by EM waves with SAM,i.e.,left-handed and right-handed circularly polarized EM waves,present circular trajectories,while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components.Second,the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves.Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM,the angular momentum is transferred to the skyrmion non-uniformly,while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving.Third,the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated.It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM.We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories.Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0202700 and 2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)Fundamental Research Funds for the Central Universities,and Research Funds of Renmin University,China(Grant No.22XNKJ30)supported by the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University,China。
文摘Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX200718)。
文摘Orbital angular momentum(OAM)has the characteristics of mutual orthogonality between modes,and has been applied to underwater wireless optical communication(UWOC)systems to increase the channel capacity.In this work,we propose a diffractive deep neural network(DDNN)based OAM mode recognition scheme,where the DDNN is trained to capture the features of the intensity distribution of the OAM modes and output the corresponding azimuthal indices and radial indices.The results show that the proposed scheme can recognize the azimuthal indices and radial indices of the OAM modes accurately and quickly.In addition,the proposed scheme can resist weak oceanic turbulence(OT),and exhibit excellent ability to recognize OAM modes in a strong OT environment.The DDNN-based OAM mode recognition scheme has potential applications in UWOC systems.
基金Sponsored by the High Technology Research & Development Program of China(Grant No.2002AA742012)
文摘A new flexible tether-net space robotic system used to capture space debris is presented in this paper. With a mass point assumption, a dynamic model of the tether-net system was established in orbital frame by applying Lagrange Equations. In order to investigate the net in-plane trajectories after being cast, the non-controlled R-bar and V-bar captures were simulated with ignoring the out-of-plane libration, and the effect of in-plane libration on the trajectories of the capture net was demonstrated by simulation results. With an effort to damp the in-plane libration, the control scheme based on tether tension was investigated, then an integrated control scheme was proposed by introducing thrusters into the system, and the nonlinear close-loop dynamics was linearised by feedforward strategy. Simulation results show that the feedforward controller is effective for in-plane libration damping and enables the capture net to track an expected trajectory.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60821061,60776061,10604010 and 60776063)
文摘This paper theoretically investigates the orbital magnetization of electron-doped (n-type) semiconductor het-erostructures and of hole-doped (p-type) bulk semiconductors, which are respectively described by a two-dimensional electron/hole Hamiltonian with both the included Rashba spin-orbit coupling and Zeeman splitting terms. It is the Zeeman splitting, rather than the Rashba spin-orbit coupling, that destroys the time-reversal symmetry of the semiconductor systems and results in nontrivial orbital magnetization. The results show that the magnitude of the orbital magnetization per hole and the Hall conductance in the p-type bulk semiconductors are about 10^-2-10^-1 effective Bohr magneton and 10^-1-1 e^2/h, respectively. However, the orbital magnetization per electron and the Hall conductance in the n-type semiconductor heterostructures are too small to be easily observed in experiment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90303013 and 10874186)the ‘100 Talents Project’ and the Knowledge Innovation Program of the Chinese Academy of Sciences (CAS)
文摘Lattice, magnetic and orbital structures in KCuF3 are self-consistently determined by our cluster self-consistent field approach based on a spin-orbital-lattice Hamiltonian. Two stable structures are obtained and found to be degenerate, which confirms the presence of the coexistent phases observed experimentally. We clearly show that due to the inherent frustration, the ground state of the system only with the superexchange interaction is degenerate; while the Jahn-Teller distortion, especially the anharmonic effect, stabilizes the orbital ordered phase at about 23% in the x2-y2 orbit and at 77% in the 3z2-r2 orbit. Meanwhile the magnetic moment of Cu is considerably reduced to 0.56μB, and magnetic coupling strengths are highly anisotropic, Jx/Jxy ≈ 18. These results are in good agreement with the experiments, implying that the anharmonic Jahn-Teller effect plays an essential role in stabilising the orbital ordered ground state of KCuF3.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB921904 and 2012CB927402the National Natural Science Foundation of China under Grant Nos 11074142 and 11021464+1 种基金the Key Project of Chinese Ministry of Education under Grant No 309003the Tsinghua TNList Cross-discipline Foundation
文摘Structural and magnetic properties are investigated for Fe1-xMnxV2O4 (0≤ x ≤ 1) spinels. As orbital-active Fe^2+ is substituted with Mn^2+, the cubie-to-tetragonM transition TsI and the tetragonal-to-orthorhombic transition Ts2 gradually decrease. These structural transitions originate from the Fe^2+ ferro-orbital order (F-OO). Below Yafet-Kittel (YK) magnetic transition TN2, V^3+ orbital order (V-OO) plays an important role on global structure. Here x = 0.6 is a critical point. Fe^2+ F-OO and V^3+ F-OO coexist for 0 ≤ x ≤ 0.5. For x≥ 0.6, the orbital pattern of V^3+ is antiferro (AF)-00, and Fe^2+ F-OO disappears. Structural transition Ts3, accompanied by YK magnetic transition TN2, decreases initially, and then increases at x = 0.6. A scenario for the complex phase diagram arising from the cooperation or competition of Fe^2+ and V^3+ orbitals is proposed.
基金the National Natural Science Foundation of China(Grant Nos.91963201 and 51671098)the 111 Project(Grant No.B20063)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University PCSIRT(Grant No.IRT16R35)the Natural Science Foundation of Gansu Province,China(Grant No.22JR5RA474).
文摘The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect.However,few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque.Here,we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures.A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm^(-2))(1 Oe=79.5775 A·m^(-1)).The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106A·cm^(-2).Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.
文摘The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic properties of the NiFe compound. Polarized spin within the framework of the ferromagnetic state between magnetic ions is considered. Also, magnetic moments considered to lie along (001) axes are computed. The Monte Carlo simulation is used to study the magnetic properties of NiFe. The transition temperature To, hysteresis loop, coercive field and remanent magnetization of the NiFe compound are obtained using the Monte Carlo simulation.
文摘Dear Editor,Transorbital penetrating injury is one emergency faced by ophthalmologists during primary care that requires special attention because it can lead to serious ophthalmic and neurological sequela.Of all head injuries, intracranial penetrating injuries occur at a low rate of 0.4%[1], and transorbital-cranial penetrating injuries are even more rare, but do occur more frequently in young children than in adults[2-3].
文摘There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute three-stage hierarchy of particles, atoms, and gravitational systems. Below 1/c waves are dissociated into strands and neutrinos are separated as points of charge. The electron and positron are single strands with opposed helical turns. Protons and neutrons have a nucleus of positrinos and negatrinos surrounded by concentric shells of strands in 2"~ resonance. The orbital strands reverberate into space creating a field with gravitational and electromagnetic aspects. The orbital system defines matter, energy, motion, and time based on composition. The three stages have a constant field content but differ by field density and components.
文摘We consider the effect of a magnetic field on the motion of an atomic electron in its orbit. The usual treatment deals with the change in magnetic dipole moment assuming the electron's speed changes but the radius of its orbit remains unchanged. We derive the change in the magnetic dipole moment allowing both the speed and the radius to change. The cases of fixed radius on one hand and of fixed speed on the other are treated as special cases of our general case.
基金Supported by the Mettapracharak grantThai Government Budget grant+1 种基金Health Systems Research Institute grantNational Science and Technology Development Agency grant.
文摘AIM:To compare the exposure rate,infection rate,percentage of enhancement,and success rate between Medpor and the three-dimensional printed polyethylene(3DP-PE)orbital implant in a preliminary report.METHODS:This prospective,randomized,equivalence,controlled trial was conducted at two institutes.The equivalent margin was±10%.The sample size for the equivalence trial was 174 participants per group.Patients who were eligible for enucleations received either Medpor or 3DP-PE implants based on a randomized block of six.The surgeries were performed by five oculoplastic surgeons.The assessor and patients were masked.The magnetic resonance imaging(MRI)of the orbit was performed at least 6mo after operation and the fibrovascular ingrowth was analyzed using the Image J software.Follow-up continued at least 1y after surgery.The intention to treat and per protocol approaches were used.RESULTS:Totally 128 patients met the criteria in the report.Fifty Medpor and 553DP-PE cases completed the trial.The most common cause of blindness was trauma.The mean follow-up times of Medpor and 3DP-PE were 33 and 40mo respectively.The exposure rate was not statistically significant between two groups(6.0%and 7.3%),P<0.05,95%CI(-9.8%,+12.0%).The success rates were 94%(Medpor)and 92.7%(3DP-PE).No postoperative infection was reported.Nine patients had MRI tests and two had implant exposures with 66.3% enhancement at 75mo(Medpor)and 58% enhancement at 57mo(3DP-PE)postoperatively.CONCLUSION:There is no statistically significant difference in exposure rate and success rate between Medpor and 3DP-PE in enucleation in the report.However,we cannot conclude that they are equivalent in terms of the exposure rate and success rate because the 95%CI is wider than±10%.The infection rate is equivalent in both groups.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52161135302,22105087)the Postdoctoral Research Foundation of China(Grant No.2022M721360)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210446)。
文摘The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62375140 and 62001249)the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No.M36055)。
文摘Orbital angular momentum(OAM), as a new degree of freedom, has recently been applied in holography technology.Due to the infinite helical mode index of OAM mode, a large number of holographic images can be reconstructed from an OAM-multiplexing hologram. However, the traditional design of an OAM hologram is constrained by the helical mode index of the selected OAM mode, for a larger helical mode index OAM mode has a bigger sampling distance, and the crosstalk is produced for different sampling distances for different OAM modes. In this paper, we present the design of the OAM hologram based on a Bessel–Gaussian beam, which is non-diffractive and has a self-healing property during its propagation. The Fourier transform of the Bessel–Gaussian beam is the perfect vortex mode that has the fixed ring radius for different OAM modes. The results of simulation and experiment have demonstrated the feasibility of the generation of the OAM hologram with the Bessel–Gaussian beam. The quality of the reconstructed holographic image is increased, and the security is enhanced. Additionally, the anti-interference property is improved owing to its self-healing property of the Bessel-OAM holography.