A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these syst...A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.展开更多
针对现有混沌检测算法精度不高、状态响应滞后的问题,该文从混沌状态整体性、系统解频域特性等角度进行全面分析,提出一种基于摄动解主频功率比的弱信号检测方法,该算法不仅准确实现了临界状态的有效界定,提高了信号检测的可靠程度,而...针对现有混沌检测算法精度不高、状态响应滞后的问题,该文从混沌状态整体性、系统解频域特性等角度进行全面分析,提出一种基于摄动解主频功率比的弱信号检测方法,该算法不仅准确实现了临界状态的有效界定,提高了信号检测的可靠程度,而且揭示了系统各个状态之间的差别及物理含义。文中采用参数摄动法推导了Duffing-Van der pol振子的一阶摄动平衡解,证明了其为影响主频率分量的主要因素。在此基础上,采用经验模态分解方法对有效参量信息进行选择性重构,以最小均方误差约束准则下的比值系数重新定义了系统状态,得到系统主频功率比与策动力幅值之间的映射关系,并以此作为临界阈值确定的依据。实验结果表明,采用主频功率比准则的信号检测方法可靠性提高了约1个数量级,且算法的响应速度为传统分析方法的2倍以上。展开更多
文摘A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.
文摘针对现有混沌检测算法精度不高、状态响应滞后的问题,该文从混沌状态整体性、系统解频域特性等角度进行全面分析,提出一种基于摄动解主频功率比的弱信号检测方法,该算法不仅准确实现了临界状态的有效界定,提高了信号检测的可靠程度,而且揭示了系统各个状态之间的差别及物理含义。文中采用参数摄动法推导了Duffing-Van der pol振子的一阶摄动平衡解,证明了其为影响主频率分量的主要因素。在此基础上,采用经验模态分解方法对有效参量信息进行选择性重构,以最小均方误差约束准则下的比值系数重新定义了系统状态,得到系统主频功率比与策动力幅值之间的映射关系,并以此作为临界阈值确定的依据。实验结果表明,采用主频功率比准则的信号检测方法可靠性提高了约1个数量级,且算法的响应速度为传统分析方法的2倍以上。