This article compares the size of selected subsets using nonparametric subset selection rules with two different scoring rules for the observations. The scoring rules are based on the expected values of order statisti...This article compares the size of selected subsets using nonparametric subset selection rules with two different scoring rules for the observations. The scoring rules are based on the expected values of order statistics of the uniform distribution (yielding rank values) and of the normal distribution (yielding normal score values). The comparison is made using state motor vehicle traffic fatality rates, published in a 2016 article, with fifty-one states (including DC as a state) and over a nineteen-year period (1994 through 2012). The earlier study considered four block design selection rules—two for choosing a subset to contain the “best” population (i.e., state with lowest mean fatality rate) and two for the “worst” population (i.e., highest mean rate) with a probability of correct selection chosen to be 0.90. Two selection rules based on normal scores resulted in selected subset sizes substantially smaller than corresponding rules based on ranks (7 vs. 16 and 3 vs. 12). For two other selection rules, the subsets chosen were very close in size (within one). A comparison is also made using state homicide rates, published in a 2022 article, with fifty states and covering eight years. The results are qualitatively the same as those obtained with the motor vehicle traffic fatality rates.展开更多
Background: Bivariate count data are commonly encountered in medicine, biology, engineering, epidemiology and many other applications. The Poisson distribution has been the model of choice to analyze such data. In mos...Background: Bivariate count data are commonly encountered in medicine, biology, engineering, epidemiology and many other applications. The Poisson distribution has been the model of choice to analyze such data. In most cases mutual independence among the variables is assumed, however this fails to take into accounts the correlation between the outcomes of interests. A special bivariate form of the multivariate Lagrange family of distribution, names Generalized Bivariate Poisson Distribution, is considered in this paper. Objectives: We estimate the model parameters using the method of maximum likelihood and show that the model fits the count variables representing components of metabolic syndrome in spousal pairs. We use the likelihood local score to test the significance of the correlation between the counts. We also construct confidence interval on the ratio of the two correlated Poisson means. Methods: Based on a random sample of pairs of count data, we show that the score test of independence is locally most powerful. We also provide a formula for sample size estimation for given level of significance and given power. The confidence intervals on the ratio of correlated Poisson means are constructed using the delta method, the Fieller’s theorem, and the nonparametric bootstrap. We illustrate the methodologies on metabolic syndrome data collected from 4000 spousal pairs. Results: The bivariate Poisson model fitted the metabolic syndrome data quite satisfactorily. Moreover, the three methods of confidence interval estimation were almost identical, meaning that they have the same interval width.展开更多
文摘This article compares the size of selected subsets using nonparametric subset selection rules with two different scoring rules for the observations. The scoring rules are based on the expected values of order statistics of the uniform distribution (yielding rank values) and of the normal distribution (yielding normal score values). The comparison is made using state motor vehicle traffic fatality rates, published in a 2016 article, with fifty-one states (including DC as a state) and over a nineteen-year period (1994 through 2012). The earlier study considered four block design selection rules—two for choosing a subset to contain the “best” population (i.e., state with lowest mean fatality rate) and two for the “worst” population (i.e., highest mean rate) with a probability of correct selection chosen to be 0.90. Two selection rules based on normal scores resulted in selected subset sizes substantially smaller than corresponding rules based on ranks (7 vs. 16 and 3 vs. 12). For two other selection rules, the subsets chosen were very close in size (within one). A comparison is also made using state homicide rates, published in a 2022 article, with fifty states and covering eight years. The results are qualitatively the same as those obtained with the motor vehicle traffic fatality rates.
文摘Background: Bivariate count data are commonly encountered in medicine, biology, engineering, epidemiology and many other applications. The Poisson distribution has been the model of choice to analyze such data. In most cases mutual independence among the variables is assumed, however this fails to take into accounts the correlation between the outcomes of interests. A special bivariate form of the multivariate Lagrange family of distribution, names Generalized Bivariate Poisson Distribution, is considered in this paper. Objectives: We estimate the model parameters using the method of maximum likelihood and show that the model fits the count variables representing components of metabolic syndrome in spousal pairs. We use the likelihood local score to test the significance of the correlation between the counts. We also construct confidence interval on the ratio of the two correlated Poisson means. Methods: Based on a random sample of pairs of count data, we show that the score test of independence is locally most powerful. We also provide a formula for sample size estimation for given level of significance and given power. The confidence intervals on the ratio of correlated Poisson means are constructed using the delta method, the Fieller’s theorem, and the nonparametric bootstrap. We illustrate the methodologies on metabolic syndrome data collected from 4000 spousal pairs. Results: The bivariate Poisson model fitted the metabolic syndrome data quite satisfactorily. Moreover, the three methods of confidence interval estimation were almost identical, meaning that they have the same interval width.