Titanium-doped ordered mesoporous alumina with specific structural properties has been prepared by the evaporation induced self-assembly sol-gel method. The results show that the doped titanium helps to stabilize the ...Titanium-doped ordered mesoporous alumina with specific structural properties has been prepared by the evaporation induced self-assembly sol-gel method. The results show that the doped titanium helps to stabilize the ordered mesoporous alumina material without influencing the ordered mesoporosity. The textural properties of the obtained sample are related to the amount of doped titanium. When the molar ratio of aluminum to titanium (n(Al)/n(Ti)) is controlled as 10.2, the titanium-doped ordered mesoporous alumina exhibits high surface area (up to 218 m^2 g^-1), large pore volume (0.42 cm^3 g^-1) and narrow pore diameter (6.1 nm) after treating at 900 ℃, showing high thermal stability. Moreover, the obtained sample calcined at 900 ℃ still maintains ordered mesoporous structure and exhibits high thermal stability.展开更多
In this paper,ordered mesoporous alumina(OMA)support with the high surface area(328 m^(2)g^(-1))and the large pore volume 0.74(cm^(3)·g^(-1))was synthesized by homogeneous precipitation method.And the influence o...In this paper,ordered mesoporous alumina(OMA)support with the high surface area(328 m^(2)g^(-1))and the large pore volume 0.74(cm^(3)·g^(-1))was synthesized by homogeneous precipitation method.And the influence of EDTA on the physical and chemical properties of the modified catalysts was also studied.The characteristic results showed that the addition of EDTA could adjust the metal-support interaction and improved the acidity of the corresponding catalyst.Combined with the catalytic performance results,the EDTA-modified Ni Mo E(1.0)/OMA catalyst displays the highest DBT hydrodesulfurization conversion(97.7%).展开更多
We propose a new strategy to make an active and stable Ni-based catalyst which can be operated in a wide range of reaction temperatures. The ordered mesoporous alumina(OMA) with confined Ni in the pore wall(Ni-OMA) wa...We propose a new strategy to make an active and stable Ni-based catalyst which can be operated in a wide range of reaction temperatures. The ordered mesoporous alumina(OMA) with confined Ni in the pore wall(Ni-OMA) was prepared via the one-pot evaporation induced self-assembly method. By using the incipient impregnation method, different amounts of free Ni were loaded over Ni-OMA(Ni/NiOMA) at a fixed total NiO content of 15 wt%. Characterization results confirmed the formation of wellstructured Ni-OMA, and the ordered structure was still well preserved even after impregnating NiO at a content of as high as 12 wt%. The catalysts were evaluated for the CO methanation as a model reaction under varied conditions. Importantly, the activity and stability of Ni/Ni-OMA for the titled reaction were significantly regulated by simply changing the ratio of the confined to free Ni. Over the optimum catalyst of NiO(2 wt%)/NiO(13 wt%)-OMA, the high activity at a temperature of as low as 300 ℃ was achieved with the space-time yield of methane over 7.6 g gcat-1 h-1 while a long-term stability for a time-onstream of 400 h was confirmed without an observable deactivation under the conditions of 600 ℃ and an extremely high gas hourly space velocity of 120,000 mL g-1 h-1. The results were well explained as the integrated merits of the free Ni for a high dispersion and the confined Ni in OMA for the anti-sintering property.展开更多
基金the financial support from the National Natural Science Foundation of China(No.51103024)Joint Research Program of Fuzhou University(No.DH-700)
文摘Titanium-doped ordered mesoporous alumina with specific structural properties has been prepared by the evaporation induced self-assembly sol-gel method. The results show that the doped titanium helps to stabilize the ordered mesoporous alumina material without influencing the ordered mesoporosity. The textural properties of the obtained sample are related to the amount of doped titanium. When the molar ratio of aluminum to titanium (n(Al)/n(Ti)) is controlled as 10.2, the titanium-doped ordered mesoporous alumina exhibits high surface area (up to 218 m^2 g^-1), large pore volume (0.42 cm^3 g^-1) and narrow pore diameter (6.1 nm) after treating at 900 ℃, showing high thermal stability. Moreover, the obtained sample calcined at 900 ℃ still maintains ordered mesoporous structure and exhibits high thermal stability.
基金financially supported by the National Natural Science Foundation of China(No.21878330,21676298)the National Key R&D Program of China(2019YFC1907602)the CNPC Key Research Project(2016E-0707)。
文摘In this paper,ordered mesoporous alumina(OMA)support with the high surface area(328 m^(2)g^(-1))and the large pore volume 0.74(cm^(3)·g^(-1))was synthesized by homogeneous precipitation method.And the influence of EDTA on the physical and chemical properties of the modified catalysts was also studied.The characteristic results showed that the addition of EDTA could adjust the metal-support interaction and improved the acidity of the corresponding catalyst.Combined with the catalytic performance results,the EDTA-modified Ni Mo E(1.0)/OMA catalyst displays the highest DBT hydrodesulfurization conversion(97.7%).
基金the National Natural Science Foundation of China(U1862116)the National Key Research and Development Program of China(2018YFB0604600-04)the Fundamental Research Funds for the Central Universities(GK201901001)。
文摘We propose a new strategy to make an active and stable Ni-based catalyst which can be operated in a wide range of reaction temperatures. The ordered mesoporous alumina(OMA) with confined Ni in the pore wall(Ni-OMA) was prepared via the one-pot evaporation induced self-assembly method. By using the incipient impregnation method, different amounts of free Ni were loaded over Ni-OMA(Ni/NiOMA) at a fixed total NiO content of 15 wt%. Characterization results confirmed the formation of wellstructured Ni-OMA, and the ordered structure was still well preserved even after impregnating NiO at a content of as high as 12 wt%. The catalysts were evaluated for the CO methanation as a model reaction under varied conditions. Importantly, the activity and stability of Ni/Ni-OMA for the titled reaction were significantly regulated by simply changing the ratio of the confined to free Ni. Over the optimum catalyst of NiO(2 wt%)/NiO(13 wt%)-OMA, the high activity at a temperature of as low as 300 ℃ was achieved with the space-time yield of methane over 7.6 g gcat-1 h-1 while a long-term stability for a time-onstream of 400 h was confirmed without an observable deactivation under the conditions of 600 ℃ and an extremely high gas hourly space velocity of 120,000 mL g-1 h-1. The results were well explained as the integrated merits of the free Ni for a high dispersion and the confined Ni in OMA for the anti-sintering property.