期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of long-period stacking ordered structure on very high cycle fatigue properties of Mg-Gd-Y-Zn-Zr alloys
1
作者 Xiangyu WANG Chao HE +3 位作者 Xue Li Lang LI Yongjie LIU Qingyuan WANG 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2811-2822,共12页
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th... Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior. 展开更多
关键词 Fatigue crack initiation Long-period stacking ordered structure Mg alloys Ultrafine grains Very high cycle fatigue
下载PDF
Influence of the ordered structure of short-chain polymer molecule all-trans-β-carotene on Raman scattering cross section in liquid
2
作者 曲冠男 欧阳顺利 +3 位作者 王微微 里佐威 孙成林 门志伟 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期444-449,共6页
We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSC... We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSCS) of short-chain polymer all-trans-β-carotene is extremely high in liquid. Resonance and strong coherent weakly damped CC bond vibrating properties play important roles under these conditions. Coherent weakly damped CC bond vibration strength is associated with molecular ordered structure. All-trans-β-carotene has highly ordered structure and strong coherent weakly damped CC bond vibrating properties, which lead to large RSCS in the solvent with large density and low concentration at low temperature. 展开更多
关键词 Raman scattering cross-section polymer molecule ordered structure
下载PDF
The chemical environment and structural ordering in liquid Mg-Y-Zn system:An ab-initio molecular dynamics investigation of melt for the formation mechanism of LPSO structure
3
作者 Tangpeng Ma Jin Wang +5 位作者 Kaiming Cheng Chengwei Zhan Jixue Zhou Jingyu Qin Guochen Zhao Xinfang Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期815-824,共10页
In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular... In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level. 展开更多
关键词 Mg-Y-Zn Chemical environment Structural ordering ab-initio molecular dynamics
下载PDF
Bioinspired flexible,high-strength,and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure 被引量:3
4
作者 Han-Ping Yu Ying-Jie Zhu 《Nano Research》 SCIE EI CSCD 2021年第10期3643-3652,共10页
The synthetic hydrogels with high water contents are promising for various applications,however,they usually exhibit low mechanical properties.In this work,inspired by the natural biological soft tissues,whose hierarc... The synthetic hydrogels with high water contents are promising for various applications,however,they usually exhibit low mechanical properties.In this work,inspired by the natural biological soft tissues,whose hierarchically ordered fibrous structures result in high strength and good flexibility,a flexible,high-strength,and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure(HFMOS)is developed based on ultralong hydroxyapatite(HAP)nanowires and polyacrylic acid(PAA).The as-prepared HFMOS hydrogel has a high water content(~70 wt.%),dense structure,and excellent mechanical properties,and these properties are similar to those of the human cartilage and are superior to many hydrogels reported in the literature.The excellent mechanical properties of the HFMOS hydrogel originate from the combination of the fiberboard-and-mortar hierarchically ordered structure,reinforcement of ultralong HAP nanowires,strong interfacial strength,and multiple energy dissipation pathways.Moreover,thanks to the controllable components and injection procedure,the HFMOS hydrogel with a Janus structure is prepared for particular applications.The HFMOS hydrogel possesses abundant ordered water channels,and can be used for loading,release,and directed delivery of various functional substances.Thus,the as-prepared flexible,high-strength,and versatile HFMOS hydrogel possesses a great potential for various applications such as water purification,pollution treatment,biomedicine,nanofluidic devices,and high-performance structural materials. 展开更多
关键词 HYDROGEL nanowire HYDROXYAPATITE ordered structure
原文传递
Guinier-Preston Zone,Quasicrystal and Long-period Stacking Ordered Structure in Mg-based Alloys,A Review 被引量:3
5
作者 Yongbo XU Daokui XU +1 位作者 Xiaohong SHAO En-hou HAN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第3期217-231,共15页
Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys. A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates... Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys. A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates.Moreover, the type of precipitates varies with different alloying elements and heat treatments, which makes it quite difficult to understand the formation mechanism of the precipitates in Mg-based alloys in depth. Thus, it is very hard to give a systematical regularity in precipitation process for the Mg-based alloys. This review is mainly focused on the formation and microstructural evolution of the precipitates, as a hot topic for the past few years, including Guinier-Preston Zones, quasicrystals and long-period stacking ordered phases formed in a number of Mg-TM-RE alloy systems, where TM = Al, Zn, Zr and RE = Y,Gd, Hd, Ce and La. 展开更多
关键词 Guinier-Preston zone QUASICRYSTAL Long-period stacking ordered structure Mg-based alloy
原文传递
Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries 被引量:2
6
作者 Sijia Guo Yingbo Xiao +8 位作者 Jia Wang Yuan Ouyang Xin Li Haoyan Deng Wenchao He Qinghan Zeng Wei Zhang Qi Zhang Shaoming Huang 《Nano Research》 SCIE EI CSCD 2021年第12期4556-4562,共7页
Lithium-sulfur(Li-S)battery has attracted intensive attention in the realm of energy storage owing to its high theoretical capacity and energy density.However,the shuttle effect of soluble lithium polysulfides(LiPSs)b... Lithium-sulfur(Li-S)battery has attracted intensive attention in the realm of energy storage owing to its high theoretical capacity and energy density.However,the shuttle effect of soluble lithium polysulfides(LiPSs)between electrodes results in rapid capacity degradation.Herein,a strategy which combines the design of both chemical interaction and microstructure of interlayer was proposed to suppress the shuttle effect.The chemical interaction between different functionalized MOFs and LiPSs was systematically studied to find the best candidate.Furthermore,an interlayer with ordered structure was constructed via the layer-by-layer assembly of metal-organic frameworks(MOFs)on graphene(UiO-66-NH_(2)@graphene)to create sinuous channels which can better impede the diffusion process of LiPSs by the strong adsorption of MOF toward LiPSs.Consequently,in comparison to the battery with a bare separator,the ordered interlayer increased the initial discharge capacity of battery by 28.98%at 1.0 C and lowered the capacity decay rate remarkably from 0.10%to 0.067%per cycle,indicating that the design of chemical interaction and microstructure paves the way for high-performance Li-S batteries. 展开更多
关键词 ordered structure INTERLAYER metal-organic frameworks lithium-sulfur battery
原文传递
Spatiotemporally dynamic therapy with shape-adaptive drug-gel for the improvement of tissue regeneration with ordered structure
7
作者 Ya-nan Fu Yongsan Li +7 位作者 Bo Deng Yingjie Yu Fang Liu Lei Wang Guang Chen Lei Tao Yen Wei Xing Wang 《Bioactive Materials》 SCIE 2022年第2期165-176,共12页
A spatiotemporally dynamic therapy(SDT)is proposed as a powerful therapeutic modality that provides spatially dynamic responses of drug-carriers for adapting to the wound microenvironment.Herein,dynamic chitosan-poly(... A spatiotemporally dynamic therapy(SDT)is proposed as a powerful therapeutic modality that provides spatially dynamic responses of drug-carriers for adapting to the wound microenvironment.Herein,dynamic chitosan-poly(ethylene glycol)(CP)Schiff-base linkages are employed to perform SDT by directly converting a liquid drug Kangfuxin(KFX)into a gel formation.The obtained KFX-CP drug-gel with shape-adaptive property is used to treat a representative oral mucositis(OM)model in a spatiotemporally dynamic manner.The KFX-CP drug-gel creates an instructive microenvironment to regulate signaling biomolecules and endogenous cells behavior,thereby promoting OM healing by the rule of dynamically adjusting shape to fit the irregular OM regions first,and then provides space for tissue regeneration,over KFX potion control and the general hydrogel group of CP hydrogel and KFX-F127.Most interestingly,the regenerated tissue has ordered structure like healthy tissue.Therefore,the SDT provides a new approach for the design of next generation of wound dressing and tissue engineering materials. 展开更多
关键词 Spatiotemporally dynamic therapy Drug-gel Shape-adaptive Tissue regeneration ordered structure
原文传递
Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures 被引量:17
8
作者 Jinshan Zhang Jidong Xu Weili Cheng Changjiu Chen Jingjing Kang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1157-1162,共6页
Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electr... Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase. 展开更多
关键词 Mg-Zn-Y alloy Long-period stacking ordered (LPSO) structure Micro-galvanic corrosion Mg(12)YZn phase Corrosion behavior
原文传递
Role of Ordering Energy in Formation of Grain Structure and Special Boundaries Spectrum in Ordered Alloys with L12 Superstructure 被引量:1
9
作者 O.B.Perevalova (Institute of Strength Physics and Material Science, Russian Academy of Sciences, Siberian Branch pr. Academicheskii, 2/1, 634048, Tomsk, Russia) E. V.Konovalova, N.A.Koneva and E. VKozlov (State University of Architecture and Building, Sol 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第6期585-590,共6页
It was revealed that an average energy of special boundaries is proportional to APB energy in the alloys with the L12 superstructure. This fact proves the appearance of the GAPBs in the planes of location of special b... It was revealed that an average energy of special boundaries is proportional to APB energy in the alloys with the L12 superstructure. This fact proves the appearance of the GAPBs in the planes of location of special boundaries in coincidence sites of ordered alloys. It was determined that the more energy of special boundaries in ordered alloys, the more energy of complex stacking fault. There is a correlation between the distribution of special boundaries as a function its relative energy and ordering energy: the more ordering energy, the more degree of washed away of distribution. The correlation between average relative energy of special boundaries and ordering energy was detected: the more ordering energy, the more average energy of special boundaries. The reverse dependence between ordering energy and average number of special boundaries in grains limited by boundaries of general type was discovered. 展开更多
关键词 Role of Ordering Energy in Formation of Grain structure and Special Boundaries Spectrum in ordered Alloys with L12 Superstructure
下载PDF
CRYSTAL STRUCTURE OF A LONG-PERIOD ORDERED PHASE IN Fe-C MARTENSITE AND COMPUTER SIMULATION OF ITS ELECTRON DIFFRACTION PATTERNS
10
作者 REN Xiaobing WANG Xiaotian +1 位作者 K.SHIMIZU T.TADAKI(National Laboratory of Solid State Microstructures,Nanjing University Nanjing 210093,China)(School of Materials Science and Engineering,Xi’an Jiaotong University Xi’an 710049,China)(Kanazawa Institute of Techn 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第1期23-26,共4页
Different structure models of a long-period ordered phase in Fe-C martenstie formed during aging have been checked by computer simulation of electron diffraction(ED) patterns based on these models.The results showed t... Different structure models of a long-period ordered phase in Fe-C martenstie formed during aging have been checked by computer simulation of electron diffraction(ED) patterns based on these models.The results showed that the simulated ED pattern of γ'-FexC(Ⅱ) model proposed by the present authors is in good agreement with experimentally observed ED pattern.It was also confirmed that the incommensurate superperiod stems from the coexistence of several γ'-Fe_xC(H) phases with different superperiods.The Fe(144)C(24)(Fe6C) model proposed by Uwakweh et al.generated ED patterns remarkably different from the experimental ones. 展开更多
关键词 Fe-C martensite long-period ordered phase crystal structure computer simulation electron diffraction pattern
下载PDF
Ultrasmall NiS_(2)Nanocrystals Embedded in Ordered Macroporous Graphenic Carbon Matrix for Efficiently Pseudocapacitive Sodium Storage
11
作者 Zhaozhao Liu Jiang Wang +7 位作者 Ran Bi Pinyi Zhao Mengqian Wu Xinyu Liu Likun Yin Chengyang Wang Mingming Chen Kemeng Ji 《Transactions of Tianjin University》 EI CAS 2023年第2期89-100,共12页
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw... Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications. 展开更多
关键词 Sodium-ion battery Sodium-ion hybrid capacitor Three-dimensionally ordered macroporous structure Graphenic carbon NiS_(2)nanocrystals
下载PDF
Three‑Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties 被引量:8
12
作者 Yan Song Fuxing Yin +3 位作者 Chengwei Zhang Weibing Guo Liying Han Ye Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期61-76,共16页
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ... Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials. 展开更多
关键词 Three-dimensional ordered structure Mesoporous carbon spheres Zinc oxide nanoparticles Microwave absorption
下载PDF
Microstructure of Si Cones Prepared by Ar^+-Sputtering Si/Mo Target
13
作者 X.L.Ma N.G.Shang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期173-175,共3页
关键词 Si cones ordered structure Mo silicide
下载PDF
Synthesis of a new ordered mesoporous NiMoO_4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane 被引量:7
14
作者 Xiaoqiang Fan Jianmei Li +4 位作者 Zhen Zhao Yuechang Wei Jian Liu Aijun Duan Guiyuan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期171-178,共8页
Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-... Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4. 展开更多
关键词 ----w 7ordered mesoporous structure NiMoO4 complex oxide vacuum nanocasting PROPANE oxidative dehydrogenation
下载PDF
Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC-Ru for highly efficient alkaline hydrogen evolution 被引量:4
15
作者 Kaixi Wang Shuo Wang +7 位作者 Kwan San Hui Haixing Gao Duc Anh Dinh Chengzong Yuan Chenyang Zha Zongping Shao Zikang Tang Kwun Nam Hui 《Carbon Energy》 SCIE CAS 2022年第5期856-866,共11页
Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.... Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.Through rational design of a hierarchical multiheterogeneous three-dimensionally(3D)ordered macroporous Mo_(2)C-embedded nitrogen-doped carbon with ultrafine Ru nanoclusters anchored on its surface(OMS Mo_(2)C/NC-Ru),we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance.The formed Ru-NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*,and the Mo_(2)C-NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations.Consequently,superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mAcm^(−2)with the mass activity more than 17 times higher than that of the benchmark Pt/C,an ultrasmall Tafel slope of 22.7 mV dec−1,and excellent electrocatalytic durability were achieved,attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo_(2)C/NC-Ru structure.By oxidizing OMS Mo_(2)C/NC-Ru into OMS MoO_(3)-RuO_(2)catalyst,it can also be applied as efficient oxygen evolution electrocatalyst,enabling the construction of a quasi-symmetric electrolyzer for overall water splitting.Such a device's performance surpassed the state-of-the-art Pt/C||RuO2 electrolyzer.This study provides instructive guidance for designing 3D-ordered macroporous multicomponent catalysts for efficient catalytic applications. 展开更多
关键词 HETEROstructure hydrogen evolution reaction molybdenum carbide ordered macroporous structure ruthenium nanoparticle synergistic effect
下载PDF
Formation of β' phase in LPSO structures in an Mg88Co5Y7 alloy 被引量:1
16
作者 Q.Q.Jin X.H.Shao +3 位作者 Y.T.Zhou B.Zhang S.J.Zheng X.L.Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期175-182,共8页
Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-fiel... Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm). 展开更多
关键词 Magnesium alloys Long-period stacking ordered(LPSO)structure HAADF-STEM β’phase
下载PDF
SHORT-RANGE ORDER STRUCTURES OF Fe-Ge AMORPHOUS THIN FILMS
17
作者 WANG Wencai CHEN Yu Peking University,Beijing,China Associate Professor,Dept.of Physics,Peking University Beijing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第10期255-260,共6页
The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by tw... The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by two coordinate sub-shells with a very short dis- tance,In two films with lower Fe content,structural parameters of the nearest neighbors around a Ge atom are very near to that in amorphous germanium,and the positions of Fe at- oms are randomly substitutional.But when x=28.5%,some great changes occur on the short-range order structure of a-Fe_xGe_(1-x) film:its structure deviates from continuous ran- dora network and tends toward dense random packing of atoms.Meanwhile,there is a strong- er interaction between near neighboring Fe-Ge atoms in a-Fe_xGe_(1-x) films. 展开更多
关键词 Fe-Ge amorphous thin film X-ray short-range order structure X-ray absorption spectra
下载PDF
Quantitative determination of anti-structured defects applied to alloys of a wide chemical range
18
作者 张静 陈铮 +1 位作者 王永欣 卢艳丽 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期393-398,共6页
Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure.Component distribution Ni(75)AlxV(25-x) alloys are in... Anti-structured defects bridge atom migration among heterogeneous sublattices facilitating diffusion but could also result in the collapse of ordered structure.Component distribution Ni(75)AlxV(25-x) alloys are investigated using a microscopic phase field model to illuminate relations between anti-structured defects and composition,precipitate order,precipitate type,and phase stability.The Ni(75)AlxV(25-x) alloys undergo single Ni3V(stage Ⅰ),dual Ni3Al and Ni3V(stage Ⅱ with Ni3V prior;and stage Ⅲ with Ni3Al prior),and single Ni3Al(stage Ⅳ) with enhanced aluminum level.For Ni3V phase,anti-structured defects(V(Ni1),Niy,except V(Ni2)) and substitution defects(Al(Ni1),Al(Ni2),Alv) exhibit a positive correlation to aluminum in stage I,the positive trend becomes to negative correlation or smooth during stage Ⅱ.For Ni3 Al phase,anti-structured defects(Al(Ni),Ni(Al)) and substitution defects(V(Ni),V(Al)) have a positive correlation to aluminum in stage Ⅱ,but Ni(Al) goes down since stage Ⅲ and lasts to stage Ⅳ.V(Ni) and V(Al) fluctuate when Ni3Al precipitates prior,but go down drastically in stageⅣ.Precipitate type conversion of single Ni3V/dual(Ni3V+Ni3Al) affects Ni3V defects,while dual(Ni3V+Ni3Al)/single Ni3 Al has little effect on Ni3Al defects.Precipitate order swap occurred in the dual phase region affects on Ni3Al defects but not on Ni3V. 展开更多
关键词 defects structured prior precipitate substitution fluctuate microscopic ordered migration fitting
下载PDF
Structures of Sodium Silicate Glass
19
作者 Shangcong Cheng 《Non-Metallic Material Science》 2021年第2期39-45,共7页
The structural model of sodium silicate glass plays a crucial role in understanding the properties and the nature of binary glass and other more complicated silicate glasses.This work proposes a structural model for s... The structural model of sodium silicate glass plays a crucial role in understanding the properties and the nature of binary glass and other more complicated silicate glasses.This work proposes a structural model for sodium silicate glass based on the medium-range ordering structure of silica glass and the information found from the Na_(2)O-SiO_(2) phase diagram.This new model is different from previous ones.First,the sodium silica glass is both structurally and chemically heterogeneous on the nanometer scale.Secondly,the sodium cation distribution is Na_(2)O concentration-dependent.In order to reflect the structural change with Na_(2)O concentration,it requires two different schematic graphs to present the glass structure.The model can be extended to other binary and multiple component silicate glasses and can be experimentally verified. 展开更多
关键词 Continuous random network model Modified random network model Nanoflake model Medium-range ordering structure Na_(2)O-SiO_(2)phase diagram Calcium silicate glass
下载PDF
Enhanced photocatalytic performance of Bi_(4)O_(5)Br_(2)with threedimensionally ordered macroporous structure for phenol removal
20
作者 Kunfeng Zhang Hongxia Chen +3 位作者 Wenbo Pei Hongxing Dai Junshan Li Yongfa Zhu 《Nano Research》 SCIE EI CSCD 2023年第7期8871-8881,共11页
Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photoc... Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photocatalytic activity for phenol degradation over 3DOM Bi_(4)O_(5)Br_(2)first increased and then decreased with the rise in macropore size.Specifically,3DOM Bi_(4)O_(5)Br_(2)-255(macropore diameter ca.170 nm)exhibits the best photocatalytic activity in the static system,which is about 4.5,7.3,and 11.9 times higher than those of bulk Bi_(4)O_(5)Br_(2),Bi_(2)WO_(6),and g-C_(3)N_(4),respectively.Meanwhile,high phenol conversion(75%)is also obtained over 3DOM Bi_(4)O_(5)Br_(2)-255 in the flow system under full spectrum irradiation.Furthermore,3DOM Bi_(4)O_(5)Br_(2)-255 also shows strong mineralization capacity owing to the downward shift of valance band position(0.15 V)as compared with Bi_(4)O_(5)Br_(2).Total organic carbon(TOC)removal rate over 3DOM Bi_(4)O_(5)Br_(2)-255(62%)is much higher than that of Bi_(4)O_(5)Br_(2)(17%).The enhancement in photocatalytic performance of 3DOM Bi_(4)O_(5)Br_(2)-255 is attributable to its better phenol adsorption,O_(2)activation,and charge separation and transfer abilities.This work combines the advantages of 3D structure and surface dangling bonds,providing new possibilities for designing highly efficient photocatalysts for pollutants removal. 展开更多
关键词 three-dimensionally ordered macroporous structure Bi_(4)O_(5)Br_(2) O_(2)activation PHOTOCATALYSIS degradation
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部