Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4...Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other regions in Antarctica. Many of these meteorites show significant terrestrial weathering, probably due to a high abundance ratio of meteorites found in moraines to those on blue ice. Nine meteorites experienced severe shock metamorphism, as evidenced by undulose extinction and intense fracturing of silicates and presence of shock-induced melt veins and pockets. These heavily shocked meteorites provided us with natural samples for the study of high-pressure polymorphs of minerals.展开更多
Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrate...Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ^51v of -1.25‰ ±0.38‰ (2SD, n = 11), which is ,- 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from - 1.76‰ to - 1.29‰, whereas the δ^51V of equilibrated chondrites vary from - 1.37‰ to -1.08‰. 551V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.展开更多
Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essent...Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essential condition for constraining the early thermal and evolutionary histories of asteroids and terrestrial planets.Classifying ordinary chondrites into petrologic type(type 3–6)is the criterion for studying the thermal metamorphism of their parent bodies.However,the boundary between the unequilibrated(type 3)and equilibrated(type 4–6)chondrites is ambiguous at present,thus,limiting the understanding of their thermal metamorphism.In this study,the petrology,mineralogy and chemical composition of a set of seven ordinary chondrites with different degrees of thermal metamorphism collected from Grove Mountains(Antarctica)have been studied.The results demonstrated that these chondrite samples were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6 type meteorites,with optimal correlations of Si,Mg,Fe,Mn and Ca with equilibrium degree of the olivine and low-calcium pyroxene and petrologic type.In this respect,the multi-parameter classification standard PMD(SiO2)-PMD(MgO)-PMD(MnO)-PMD(CaO)based on the percent mean deviation(PMD)of the chemical compositions of the olivine and low-calcium pyroxene was proposed to distinguish between the unequilibrated and equilibrated meteorites.The proposed standard exhibited high“resolution”in terms of classification,thus,also deepening the understanding of the effect of the silicate mineral composition in the thermal metamorphism of chondrites.Highlights The chemical groups and petrologic types of the selected seven Antarctic chondrites were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6.A new method for petrologic type classification is proposed to distinguish the unequilibrated and equilibrated chondrites.The above developed multi-parameter system exhibited high“resolution”in terms of classification.展开更多
Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discu...Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discussed in this study. Among them, six are unequilibrated ordinary chondrites, including 3 H3 and 3 L3 ; and 92 meteorites are equilibrated ordinary chondrites, including 24 H-group ( 13 H4, 10 H5, 1 H6), 64 L-group (2 L4, 44 L5, 18 L6) and 4 LL-group (3 LL4, 1 LL5). Most GRV ehondrites ( 〉 90% ) displayed minor weathering effect ( W1 and W2). About half of the meteorites experienced severe shock metamorphism. They commonly contain shock-induced melt veins and pockets. These heavily shocked meteorites provide us with natural samples for study of high-pressure polymorphs of minerals. In addition, the Grove Mountains collection seems to have more abundant unequilibrated and L group ordinary ehondrites compared to the US Antarctic meteorite collection which were mainly found along the Transantarctic Mountains.展开更多
Aluminum-rich chondrules (ARCs), which share mineralogic and chemical properties with both Ca, Al-rich inclusions (CAIs) and ferromagnesian chondrules, play an important role in revealing their temporal and petrog...Aluminum-rich chondrules (ARCs), which share mineralogic and chemical properties with both Ca, Al-rich inclusions (CAIs) and ferromagnesian chondrules, play an important role in revealing their temporal and petrogenetic relationships. In this work, seven ARCs were found in three ordinary chondrites GRV 022410 (H4), GRV 052722 (H3.7) and Julesburg (L3.6). They contain bulk Al2O3 - 17%-33% and exhibit igneous textures composed of olivine, high- and low-Ca pyroxene, plagioclase, spinel and glass. In situ SIMS analyses show that ARCs have oxygen isotopic compositions (δ18O=-6.1‰-7.1‰; δ17O= -4.5‰-5.1‰) close to ferromagnesian chondrules but far more depleted in 160 than CAIs (δ18O=-40‰; δ17O=-40‰). Most ARCs plot close to the terrestrial mass fractionation (TF) line, and a few between the TF and carbonaceous chondrite anhydrous mixing (CCAM) lines. Plagioclase, nepheline and glass suffered O-isotopic exchanges during the metamorphism processes in the parent body. Spinel, olivine and pyroxene represent the primary O-isotopic compositions of ARCs, and define a fitted line with a slope of- 0.7±0.1. Compared with the results of previous studies, shallower slope as well as more depleted 160 compositions further demonstrates that ARCs in ordinary chondrites are not a simple mixing product of ferromagnesian chondrules and CAIs. Instead, they probably experienced higher-degree oxygen isotope exchange with a δ6O-poor nebular gas reservoir during multiple melting episodes.展开更多
The shock metamorphism of 47 H group chondrites (H-chondrites) from the Grove Mountains including undulatory extinction, planar fractures, mosaic extinction, shock veins and pockets, and dendritic eutectic metal-sul...The shock metamorphism of 47 H group chondrites (H-chondrites) from the Grove Mountains including undulatory extinction, planar fractures, mosaic extinction, shock veins and pockets, and dendritic eutectic metal-sulfide, is observed through optical microscope. The textures and assemblages of shock veins in these H-chondrites are examined by the scanning electron microscope. Based on observations of the above shock effects, the shock stages of the 47 H-chondrites are classified into S1(5), S2(19),S$3(14), S4(8) and S5(1). Of these H-chondrites, GRV 022469 has the highest(S5) shock stage. The comparison of shock stages in these H-chondrites with L group chondrites(L-chondrites) indicates that the shock metamorphism of H-chondrites is relatively low (except for GRV 022469, they are all lower than $5). A scenario for the history of the H-chondrite parent body is proposed that suggests the duration of the shock events in the H-chondrite parent bodies was much shorter than those in L-chondrite parent bodies. Also, the pressure may have been released more quickly, and consequently, the high-pressure phases should be easily preserved. However, the parent bodies of the H-chondrites may have been exposed to high temperatures for a longer time after the shock event, so the high-pressure phases formed by solid transformation might have retro-metamorphosed to low-pressure ones; its peak pressure is estimated to be less than 15 GPa. Wadsleyite was found in a shock vein in GRV022469, as confirmed by the Raman spectrometer. Petrological and mineralogical characteristics support the idea that the wadsleyite was formed by solid-state transformation.展开更多
We report here for the first time the composition and mineralogical studies on a new meteorite, which fell in Dhayala ki Chappar (24°58°N, 73° 48°27°E) 5 km NW of Nathdwara in south Rajastha...We report here for the first time the composition and mineralogical studies on a new meteorite, which fell in Dhayala ki Chappar (24°58°N, 73° 48°27°E) 5 km NW of Nathdwara in south Rajasthan, India, on Dec. 25th, 2012. Mineralogical and compositional studies were carried out on a representative piece of the Nathdwara meteorite sample. The mineralogical composition of the meteorite has been found to be olivine (42 45 vol.%), feldspar (10-15 vol.%), orthopyroxene (23-25 vol.%), troilite (6 8 vol.%), and titanium bearing minerals (6-8 vol.%). Our investigations show that the Nathdwara meteorite belongs to H6 group of ordinary chondrites.展开更多
文摘Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other regions in Antarctica. Many of these meteorites show significant terrestrial weathering, probably due to a high abundance ratio of meteorites found in moraines to those on blue ice. Nine meteorites experienced severe shock metamorphism, as evidenced by undulose extinction and intense fracturing of silicates and presence of shock-induced melt veins and pockets. These heavily shocked meteorites provided us with natural samples for the study of high-pressure polymorphs of minerals.
基金financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000)the National Science Foundation of China (41173077, 41776196, 41630206, and 41325011)+1 种基金the National Science and Technology Foundation Platform Project of Ministry of Science and Technology of China (2005DKA21406)the 111 Project
文摘Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ^51v of -1.25‰ ±0.38‰ (2SD, n = 11), which is ,- 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from - 1.76‰ to - 1.29‰, whereas the δ^51V of equilibrated chondrites vary from - 1.37‰ to -1.08‰. 551V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.
基金funded by Strategic Priority Research Program of Chinese Academy of Sciences(XDB 41000000)Project funded by China Postdoctoral Science Foundation(2020M673557XB)+4 种基金Guangxi Natural Science Foundation under Grant No.2020JJB150056Civil Aerospace Pre Research Project(D020302 and D020206)Guangxi Scientific Base and Talent Special Projects(No.AD1850007)Foundation of Guilin University of Technology(GUTQDJJ2019165)the grant from Key Laboratory of Lunar and Deep Space Exploration,CAS(LDSE201907).
文摘Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essential condition for constraining the early thermal and evolutionary histories of asteroids and terrestrial planets.Classifying ordinary chondrites into petrologic type(type 3–6)is the criterion for studying the thermal metamorphism of their parent bodies.However,the boundary between the unequilibrated(type 3)and equilibrated(type 4–6)chondrites is ambiguous at present,thus,limiting the understanding of their thermal metamorphism.In this study,the petrology,mineralogy and chemical composition of a set of seven ordinary chondrites with different degrees of thermal metamorphism collected from Grove Mountains(Antarctica)have been studied.The results demonstrated that these chondrite samples were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6 type meteorites,with optimal correlations of Si,Mg,Fe,Mn and Ca with equilibrium degree of the olivine and low-calcium pyroxene and petrologic type.In this respect,the multi-parameter classification standard PMD(SiO2)-PMD(MgO)-PMD(MnO)-PMD(CaO)based on the percent mean deviation(PMD)of the chemical compositions of the olivine and low-calcium pyroxene was proposed to distinguish between the unequilibrated and equilibrated meteorites.The proposed standard exhibited high“resolution”in terms of classification,thus,also deepening the understanding of the effect of the silicate mineral composition in the thermal metamorphism of chondrites.Highlights The chemical groups and petrologic types of the selected seven Antarctic chondrites were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6.A new method for petrologic type classification is proposed to distinguish the unequilibrated and equilibrated chondrites.The above developed multi-parameter system exhibited high“resolution”in terms of classification.
基金supported by the Doctor's Foundation of Hunan University of Science and Technology(Grant No.E50806)
文摘Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discussed in this study. Among them, six are unequilibrated ordinary chondrites, including 3 H3 and 3 L3 ; and 92 meteorites are equilibrated ordinary chondrites, including 24 H-group ( 13 H4, 10 H5, 1 H6), 64 L-group (2 L4, 44 L5, 18 L6) and 4 LL-group (3 LL4, 1 LL5). Most GRV ehondrites ( 〉 90% ) displayed minor weathering effect ( W1 and W2). About half of the meteorites experienced severe shock metamorphism. They commonly contain shock-induced melt veins and pockets. These heavily shocked meteorites provide us with natural samples for study of high-pressure polymorphs of minerals. In addition, the Grove Mountains collection seems to have more abundant unequilibrated and L group ordinary ehondrites compared to the US Antarctic meteorite collection which were mainly found along the Transantarctic Mountains.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20131040)the National Natural Science Foundation of China(Grants Nos.41403056,41173076,41273079,41003026)the Minor Planet Foundation of China
文摘Aluminum-rich chondrules (ARCs), which share mineralogic and chemical properties with both Ca, Al-rich inclusions (CAIs) and ferromagnesian chondrules, play an important role in revealing their temporal and petrogenetic relationships. In this work, seven ARCs were found in three ordinary chondrites GRV 022410 (H4), GRV 052722 (H3.7) and Julesburg (L3.6). They contain bulk Al2O3 - 17%-33% and exhibit igneous textures composed of olivine, high- and low-Ca pyroxene, plagioclase, spinel and glass. In situ SIMS analyses show that ARCs have oxygen isotopic compositions (δ18O=-6.1‰-7.1‰; δ17O= -4.5‰-5.1‰) close to ferromagnesian chondrules but far more depleted in 160 than CAIs (δ18O=-40‰; δ17O=-40‰). Most ARCs plot close to the terrestrial mass fractionation (TF) line, and a few between the TF and carbonaceous chondrite anhydrous mixing (CCAM) lines. Plagioclase, nepheline and glass suffered O-isotopic exchanges during the metamorphism processes in the parent body. Spinel, olivine and pyroxene represent the primary O-isotopic compositions of ARCs, and define a fitted line with a slope of- 0.7±0.1. Compared with the results of previous studies, shallower slope as well as more depleted 160 compositions further demonstrates that ARCs in ordinary chondrites are not a simple mixing product of ferromagnesian chondrules and CAIs. Instead, they probably experienced higher-degree oxygen isotope exchange with a δ6O-poor nebular gas reservoir during multiple melting episodes.
基金supported by the Pilot Project of Knowledge Innovation of Chinese Academy of Sciences (Grant no.KZCX2-YW-110)the National Natural Science Foundation of China(Grant nos. 40673055 and 40473037)the Open Foundation of Key Laboratory of Geological Engineering Centre of Guangxi Province (Grantno. Gui Ke Neng 07109011-K024)
文摘The shock metamorphism of 47 H group chondrites (H-chondrites) from the Grove Mountains including undulatory extinction, planar fractures, mosaic extinction, shock veins and pockets, and dendritic eutectic metal-sulfide, is observed through optical microscope. The textures and assemblages of shock veins in these H-chondrites are examined by the scanning electron microscope. Based on observations of the above shock effects, the shock stages of the 47 H-chondrites are classified into S1(5), S2(19),S$3(14), S4(8) and S5(1). Of these H-chondrites, GRV 022469 has the highest(S5) shock stage. The comparison of shock stages in these H-chondrites with L group chondrites(L-chondrites) indicates that the shock metamorphism of H-chondrites is relatively low (except for GRV 022469, they are all lower than $5). A scenario for the history of the H-chondrite parent body is proposed that suggests the duration of the shock events in the H-chondrite parent bodies was much shorter than those in L-chondrite parent bodies. Also, the pressure may have been released more quickly, and consequently, the high-pressure phases should be easily preserved. However, the parent bodies of the H-chondrites may have been exposed to high temperatures for a longer time after the shock event, so the high-pressure phases formed by solid transformation might have retro-metamorphosed to low-pressure ones; its peak pressure is estimated to be less than 15 GPa. Wadsleyite was found in a shock vein in GRV022469, as confirmed by the Raman spectrometer. Petrological and mineralogical characteristics support the idea that the wadsleyite was formed by solid-state transformation.
文摘We report here for the first time the composition and mineralogical studies on a new meteorite, which fell in Dhayala ki Chappar (24°58°N, 73° 48°27°E) 5 km NW of Nathdwara in south Rajasthan, India, on Dec. 25th, 2012. Mineralogical and compositional studies were carried out on a representative piece of the Nathdwara meteorite sample. The mineralogical composition of the meteorite has been found to be olivine (42 45 vol.%), feldspar (10-15 vol.%), orthopyroxene (23-25 vol.%), troilite (6 8 vol.%), and titanium bearing minerals (6-8 vol.%). Our investigations show that the Nathdwara meteorite belongs to H6 group of ordinary chondrites.