A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly,...This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes eq...In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.展开更多
Inward foreign direct investment (FDI) is expected to grow further by virtue of economic globalization. A thorough understanding of the locational determinants of inward FDI will be conducive to enhanced efficiency ...Inward foreign direct investment (FDI) is expected to grow further by virtue of economic globalization. A thorough understanding of the locational determinants of inward FDI will be conducive to enhanced efficiency in attracting direct and SOC-related investments from foreign entities. This study analyzes 51 cases of inward direct foreign investment made in the Incheon free economic zone (IFEZ) from 2002 to 2009 to determine the factors influencing FDI volume, the relevance of locations and the correlation between investment size and location. First, the relationship between the loeational determinants of FDI and the total investment size (total expected project cost) is analyzed. Second, the relationship between the locational determinants of FDI and the FDI is analyzed. Third, the relationship between the locational determinants of FDI and the location choice is analyzed. The results indicate the determinants that influence locations and investment size of FDI entities; whether these factors exercise influence in the zone; and the factors that have relatively significant effects. Ultimately, based on the analytical findings, a few implications for policy and practice are derived.展开更多
In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see add...In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see additive extrapolation method before. This new method has a great advantage over additive extrapolation method because it keeps group property. If this method is used to construct higher order schemes from lower symplectic schemes, the higher order ones are also symplectic. First we introduce the concept of adjoint methods and some of their properties. We show that there is a self-adjoint scheme corresponding to every method. With this self-adjoint scheme of lower order, we can construct higher order schemes by multiplicative extrapolation method, which can be used to construct even much higher order schemes. Obviously this constructing process can be continued to get methods of arbitrary even order.展开更多
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
文摘This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
文摘In this study, the effects of magnetic field and nanoparticle on the Jeffery- Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different a, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann :number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.
文摘Inward foreign direct investment (FDI) is expected to grow further by virtue of economic globalization. A thorough understanding of the locational determinants of inward FDI will be conducive to enhanced efficiency in attracting direct and SOC-related investments from foreign entities. This study analyzes 51 cases of inward direct foreign investment made in the Incheon free economic zone (IFEZ) from 2002 to 2009 to determine the factors influencing FDI volume, the relevance of locations and the correlation between investment size and location. First, the relationship between the loeational determinants of FDI and the total investment size (total expected project cost) is analyzed. Second, the relationship between the locational determinants of FDI and the FDI is analyzed. Third, the relationship between the locational determinants of FDI and the location choice is analyzed. The results indicate the determinants that influence locations and investment size of FDI entities; whether these factors exercise influence in the zone; and the factors that have relatively significant effects. Ultimately, based on the analytical findings, a few implications for policy and practice are derived.
文摘In this paper, we develop a new technique called multiplicative extrapolation method which is used to construct higher order schemes for ordinary differential equations. We call it a new method because we only see additive extrapolation method before. This new method has a great advantage over additive extrapolation method because it keeps group property. If this method is used to construct higher order schemes from lower symplectic schemes, the higher order ones are also symplectic. First we introduce the concept of adjoint methods and some of their properties. We show that there is a self-adjoint scheme corresponding to every method. With this self-adjoint scheme of lower order, we can construct higher order schemes by multiplicative extrapolation method, which can be used to construct even much higher order schemes. Obviously this constructing process can be continued to get methods of arbitrary even order.