The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-ric...The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.展开更多
Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for o...Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.展开更多
High resolution(939 samples)total organic carbon content(TOC)analyses were conducted on the Shuanghe Section of^152.6 m in the Changning area,Sichuan Basin.The sampling section was divided into two units considering t...High resolution(939 samples)total organic carbon content(TOC)analyses were conducted on the Shuanghe Section of^152.6 m in the Changning area,Sichuan Basin.The sampling section was divided into two units considering the distinct-different deposit environment and sediments accumulation rate.The lower part(Unit 1)and the peer part(Unit 2)with high resolution sample spacing(0.08–0.4 m)enables the identification of the precession cycle in two sedimentary sequences with distinct different sedimentary accumulation rate.MTM Power spectral analyses on untuned TOC series reveals significant peaks exceeding above the 95%confidence level and shows that both Unit 1 and Unit 2 have recorded Milankovitch cycles of 405 kyr long eccentricity,short eccentricity,obliquity and precession.The floating astronomical time scale(ATS)was constructed on the Shuanghe Section in the Early Silurian(~439.673–444.681 Ma),and which was calibrated by 405 kyr long eccentricity cycles.The total duration of the Wufeng and Longmaxi shales is 5.01 Myr.The floating ATS used for estimating the duration of the graptolite zones and each stage in the study interval.Finally,we postulated two models that could verify the linkage between orbital cycle and organic accumulation.To make sure whether productivity or preservation is the main factor that under long eccentricity control,the phase correlation between the obtained filtered signal and the theoretical orbital solution should be made clear in the further research.展开更多
The lacustrine organic-rich shale in the Permian Lucaogou(LCG)Formation of the Jimsar Sag,Junggar Basin,is one of the main shale oil plays in China.In this paper,geological and geochemical research techniques were emp...The lacustrine organic-rich shale in the Permian Lucaogou(LCG)Formation of the Jimsar Sag,Junggar Basin,is one of the main shale oil plays in China.In this paper,geological and geochemical research techniques were employed to evaluate the geochemical variability of the lacustrine shale and the pro-duction of organic matter and its preservation conditions.The LcG Formation is characterized by its complex mineral compositions and a wide range of organic matter richness and quality.The presence of high proportions ofβ-carotane and C2g steranes,indicates that the organic matter mainly originated from phytoplankton and aquatic algal-bacterial organisms,especially cyanobacteria.This study found that the productivity of the Lower LCG Member(P2li)was highest,and the Middle LCG Member(P_(2)l_(2))was the lowest.During the deposition of the Lower LCG Member,the lake's bottom water was predominantly a reducing environment,and the degradation of organic matter was largely a result of bacterial sulfate reduction.During the deposition of the Middle and Upper LCG members,the lake's bottom water was mainly oxidizing,and the degradation of organic matter was likely to be caused by aerobic processes.Based on a comprehensive analysis of the origin and production of organic matter,as well as its depo-sitional environment and preservation conditions,two organic matter accumulation models were pro-posed to explain the distribution of the organic-rich shale.In model A,the high influx of volcanic ash released nutrients and brought abundant sulfate into the water,the accumulation of organic matter was mainly controlled by the preservation of organic matter,which was mainly controlled by BsR.In the model B,the influx of volcanic ash was small,organic matter was mainly degraded by oxygen and the accumulation of organic matter is mainly determined by the production of organic matter.展开更多
Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied usin...Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.展开更多
Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fund...Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.展开更多
Substrate clogging is the worst operational problem for subsurface wastewater infiltration system ( SWIS ), nevertheless quantitative understanding of the clogging process is currently very limited. In this study, t...Substrate clogging is the worst operational problem for subsurface wastewater infiltration system ( SWIS ), nevertheless quantitative understanding of the clogging process is currently very limited. In this study, the developing process of clogging caused by organic particle accumulation and biofilm growth was investigated in two groups of lab-scale SWIS, which were fed with glucose (dissolved organic matter) and starch (particulate organic matter) influent and filled with the same substrate made of 50% brown soil and cinder at a weight of 50%. Results showed that in glucose-fed systems the growth of biofilm in the substrate pores certainly caused remarkable reduction of effective porosity, especially for the high concentration organic wastewater, whereas its influence on infiltration rate was negligible. In comparison with biofllm growth, organic particles accumulation could rapidly reduce infiltration rate and the clogging occurred in the upper layer in starch-fed systems and the most important contribution of biofilm growth to clogging was accelerating the occurrence of clogging.展开更多
A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At presen...A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At present,most studies on this set of formations have focused on the reservoir characteristics and reservoir formation mechanism of the shales,and basic studies on the palaeoenvironment and organic matter(OM)enrichment mechanism have not been fully carried out.In this paper,we recovered the sedimentary palaeoenvironment by mineralogical,elemental geochemical and organic geochemical analyses,and explored the enrichment mechanism of OM under the constraints of palaeoenvironmental evolution.The shales can be divided into two stages of sedimentary evolution:compared with the shales of the Lower Longtan Formation,the shales of the Upper Longtan Formation are relatively rich in quartz,poor in clay and carbonate minerals,and the OM type changes from typeⅢto typeⅡ_(2).The depositional environment has undergone a change from sea level rise,from warm and wet climate to dry and cold climate,and from oxygen-poor condition restricted to open reduction environment;the land source input has decreased,the siliceous mineral content has increased,the biological productivity has improved,and the deposition rate has changed from high to low.A depositional model was established for the shales of the Longtan Formation,reflecting the differential reservoir formation pattern of organic matter.For the Lower Longtan Formation shales,the most important factors controlling OM content are terrestrial source input and deposition rate,followed by paleoclimate and paleooxygen conditions.For the Upper Longtan Formation shales,the most important controlling factor is paleo-productivity,followed by sedimentation rate.The depositional model constructed for the Upper and Lower Longtan Formation shales can reproduce the enrichment of organic matter and provide a basis for later exploration and development.展开更多
The commercial exploitation of unconventional petroleum resources(e.g.,shale oil/gas and tight oil/gas)has drastically changed the global energy structure within the past two decades.Sweet-spot intervals(areas),the mo...The commercial exploitation of unconventional petroleum resources(e.g.,shale oil/gas and tight oil/gas)has drastically changed the global energy structure within the past two decades.Sweet-spot intervals(areas),the most prolific unconventional hydrocarbon resources,generally consist of extraordinarily high organic matter(EHOM)deposits or closely associated sandstones/carbonate rocks.The formation of sweet-spot intervals(areas)is fundamentally controlled by their depositional and subsequent diagenetic settings,which result from the coupled sedimentation of global or regional geological events,such as tectonic activity,sea level(lake level)fluctuations,climate change,bottom water anoxia,volcanic activity,biotic mass extinction or radiation,and gravity flows during a certain geological period.Black shales with EHOM content and their associated high-quality reservoir rocks deposited by the coupling of major geological events provide not only a prerequisite for massive hydrocarbon generation but also abundant hydrocarbon storage space.The Ordovician-Silurian Wufeng-Longmaxi shale of the Sichuan Basin,Devonian Marcellus shale of the Appalachian Basin,Devonian-Carboniferous Bakken Formation of the Williston Basin,and Triassic Yanchang Formation of the Ordos Basin are four typical unconventional hydrocarbon systems selected as case studies herein.In each case,the formation of sweet-spot intervals for unconventional hydrocarbon resources was controlled by the coupled sedimentation of different global or regional geological events,collectively resulting in a favorable environment for the production,preservation,and accumulation of organic matter,as well as for the generation,migration,accumulation,and exploitation of hydrocarbons.Unconventional petroleum sedimentology,which focuses on coupled sedimentation during dramatic environmental changes driven by major geological events,is key to improve the understanding of the formation and distribution of sweet-spot intervals(areas)in unconventional petroleum systems.展开更多
The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact...The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S2, oil-base mud has certain impact on Rock-Eval S1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.展开更多
Phenol, a ubiquitous component of industrial effluents, is a common pollutant of water resources and a serious threat to fish.The present work demonstrates that a significant amount of phenol is retained by various ti...Phenol, a ubiquitous component of industrial effluents, is a common pollutant of water resources and a serious threat to fish.The present work demonstrates that a significant amount of phenol is retained by various tissues of the common carp.Cyprinus carpio.and the snake-headed murrel.Channa punclatus.The rate of [^(14)C] phenol accumulation was higher in the carp than in the murrel.It is suggested that retention of phenol in the brain and ovary may seriously afiect the reproductive potential of the fish. 1990 Academic Press.Inc.展开更多
Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions...Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions in semi-arid sandy lands. In the present study, we examined the effects of Caragana microphylla Lam. plantations with different ages(12-and 25-year-old) on sequestrations of total SOC as well as labile SOC fractions such as light fraction organic carbon(LFOC) and microbial biomass carbon(MBC). The analyzed samples were taken from soil depths of 0–5 and 5–15 cm under two shrub-related scenarios: under shrubs and between shrubs with moving sand dunes as control sites in the Horqin Sandy Land of northern China. The results showed that the concentrations and storages of total SOC at soil depths of 0–5 and 5–15 cm were higher in 12-and 25-year-old C. microphylla plantations than in moving sand dunes(i.e., control sites), with the highest value observed under shrubs in 25-year-old C. microphylla plantations. Furthermore, the concentrations and storages of LFOC and MBC showed similar patterns with those of total SOC at the same soil depth. The 12-year-old C. microphylla plantations had higher percentages of LFOC concentration to SOC concentration and MBC concentration to SOC concentration than the 25-year-old C. microphylla plantations and moving sand dunes at both soil depths. A significant positive correlation existed among SOC, LFOC, and MBC, implying that restoring the total and labile SOC fractions is possible by afforestation with C. microphylla shrubs in the Horqin Sandy Land. At soil depth of 0–15 cm, the accumulation rate of total SOC under shrubs was higher in young C. microphylla plantations(18.53 g C/(m^2·a); 0–12 years) than in old C. microphylla plantations(16.24 g C/(m^2·a); 12–25 years), and the accumulation rates of LFOC and MBC under shrubs and between shrubs were also higher in young C. microphylla plantations than in old C. microphylla plantations. It can be concluded that the establishment of C. microphylla in the Horqin Sandy Land may be a good mitigation strategy for SOC sequestration in the surface soils.展开更多
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating...[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.展开更多
Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) protocol was employed for revealing microbial community structure and succession in a sequential anaerobic and aerobic reactor perform...Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) protocol was employed for revealing microbial community structure and succession in a sequential anaerobic and aerobic reactor performing enhanced biological phosphorus removal (EBPR) during start-up period. High phosphorus removal was achieved after 15 d. On day 30, phosphorus removal efficiency reached to 83.2% and the start-up was finished. DGGE profiles of periodical sludge samples showed that dominant microbial species were 19 OTUs (operational taxonomy units). Unweighted pair-group method using arithmetic averages (UPGMA) clustering analysis revealed that rapid community succession correlated to low phosphorus removal rate and high phosphorus removal efficiency reflected on steady community structure. Sequencing results indicated that determined sequences (12 OTUs) belonged to Proteobacterium, Actinobacteria, Gemmatimonadales and unaffiliate group. Proteobacterium, Tetrasphaera elongate and Gemmatimonas aurantiaca may act important roles in phosphorus removal. With little amount as known glycogen accumulating organisms, Candidatus Competibacter phosphatis still at accumulating-phase had limited effect on microbial community structure. When climax community was obtained, dominant microbes were 14 OTUs. Microbes in a large amount were uncultured bacterium Thauera sp., uncultured y-Proteobacterium and Tetrasphaera elongata.展开更多
We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Ob...We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Observed differences were investigated based on the microbial activity and environmental factors of the soil at the two sites. Results showed that the organic carbon content of wetland soil vegetated with Phragmites australis (site A) was markedly lower than that with P. australis and Spartina alterniflora (site B). Sites differences were due to higher microbial activity at site A, which led to higher soil respiration intensity and greater carbon outputs. This indicated that the capability of organic carbon accumulation of the site B soils was greater than at site A. In addition, petroleum pollution and soil salinity were different in the two wetland soils. After bio-remediation, the soil petroleum pollution at site B was reduced to a similar level of site A. However, the culturable microbial biomass and enzyme activity in the remediated soils were also lower than at site A. These results indicated that greater petroleum pollution at site B did not markedly inhibit soil microbial activity. Therefore, differences in vegetation type and soil salinity were the primary factors responsible for the variation in microbial activity, organic carbon output and organic carbon accumulation capability between site A and site B.展开更多
Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake via nitrite was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor((AO)2 SBR). The system showed ...Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake via nitrite was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor((AO)2 SBR). The system showed stable phosphorus and nitrogen removal performance, and average removals for COD, TN and TP were 90%, 91% and 96%, respectively. The conditions of pH 7.5—8.0 and temperature 32℃ were found detrimental to nitrite oxidation bacteria but favorable to ammonia oxidizers, and the corresponding specific oxygen uptake rates(SOUR) for phase 1 and 2 of nitrification process were 0.7 and 15 mgO 2/(gVSS·h) in respect, which led to the nitrite accumulation in aerobic phase of(AO)2 SBR. Respiratory tests showed that 40 mgNO 2-N/L did not deteriorate the sludge activity drastically, and it implied that exposure of sludge to nitrite periodically enabled the biomass to have more tolerance capacity to resist the restraining effects from nitrite. In addition, batch tests were carried out and verified that denitrifying phosphorus accumulation organisms(DPAOs) could be enriched in a single sludge system coexisting with nitrifiers by introducing an anoxic phase in an anaerobic-aerobic SBR, and the ratio of the anoxic phosphate uptake capacity to aerobic phosphate uptake capacity was 45%. It was also found that nitrite(up to 20 mgNO 2-N/L) was not inhibitory to anoxic phosphate uptake and could serve as an electron acceptor like nitrate, but presented poorer efficiency compared with nitrate.展开更多
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi...A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.展开更多
In order to reveal the impact of various fertilization strategies on carbon(C) and nitrogen(N) accumulation and allocation in corn(Zea mays L.), corn was grown in the fields where continuous fertilization manage...In order to reveal the impact of various fertilization strategies on carbon(C) and nitrogen(N) accumulation and allocation in corn(Zea mays L.), corn was grown in the fields where continuous fertilization management had been lasted about 18 years at two sites located in Central and Northeast China(Zhengzhou and Gongzhuling), and biomass C and N contents in different organs of corn at harvest were analyzed. The fertilization treatments included non-fertilizer(control), chemical fertilizers of either nitrogen(N), or nitrogen and phosphorus(NP), or phosphorus and potassium(PK), or nitrogen, phosphorus and potassium(NPK), NPK plus manure(NPKM), 150% of the NPKM(1.5NPKM), and NPK plus straw(NPKS). The results showed that accumulated C in aboveground ranged from 2 550–5 630 kg ha^–1 in the control treatment to 9 300–9 610 kg ha^–1 in the NPKM treatment, of which 57–67% and 43–50% were allocated in the non-grain organs, respectively. Accumulated N in aboveground ranged from 44.8–55.2 kg ha^-1 in the control treatment to 211–222 kg ha^–1 in the NPKM treatment, of which 35–48% and 33–44% were allocated in the non-grain parts, respectively. C allocated to stem and leaf for the PK treatment was 65 and 49% higher than that for the NPKM treatment at the both sites, respectively, while N allocated to the organs for the PK treatment was 18 and 6% higher than that for the NPKM treatment, respectively. This study demonstrated that responses of C and N allocation in corn to fertilization strategies were different, and C allocation was more sensitive to fertilization treatments than N allocation in the area.展开更多
The objective of this work is to verify a hypothesis that nitrite accumulation comes from the metabolites of denitrification phosphate accumulating organisms (DPAOs),not denitrifying bacteria.On the precondition of th...The objective of this work is to verify a hypothesis that nitrite accumulation comes from the metabolites of denitrification phosphate accumulating organisms (DPAOs),not denitrifying bacteria.On the precondition of the restriction of denitrifying bacteria in anoxic phase,static experimental test was designed using NO3-as electron acceptor,effluent was removed after sedimentation in anaerobic phase,and the same concentration solution of PO43--P was returned,so that TOC was excluded and denitrification was inhibited in the next phases.A parallel experiment was carried out simultaneously with the normal anaerobic-anoxic progress.The results showed that,in static test,by keeping the normal growth of DPAO and inhibiting denitrification of denitrifying bacteria,P-release in anaerobic and P-uptake in anoxic phase proceeded normally.DPAO had obvious effect on P-removal and the P-removal efficiency was 69%.The effluent concentration of NO3--N and NO2--N was 7.62 mg/L and 6.05 mg/L respectively,compared with parallel experiments,and nitrogen removal rate was lower.No nitrite residue was found in parallel test.Therefore,it can confirm the hypothesis that the metabolites of DPAO are both nitrogen and nitrite when nitrate is taken as electron acceptor,and nitrite is subsequently converted to nitrogen by denitrifying bacteria.展开更多
基金supported by the National Natural Science Foundation of China(No.42272110)。
文摘The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.
基金jointly funded by the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLC20210104)China Geological Survey(DD20221661)China National Science and Technology Major Project“Test and Application of Shale Gas Exploration and Evaluation Technology(2016ZX05034004)”。
文摘Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.
基金supported by the National Natural Science Foundation of China (Grant No. 41802030)National Science and Technology Major Project (Grant Nos. 2017ZX05036-004-006 and 2016ZX05036-003007)
文摘High resolution(939 samples)total organic carbon content(TOC)analyses were conducted on the Shuanghe Section of^152.6 m in the Changning area,Sichuan Basin.The sampling section was divided into two units considering the distinct-different deposit environment and sediments accumulation rate.The lower part(Unit 1)and the peer part(Unit 2)with high resolution sample spacing(0.08–0.4 m)enables the identification of the precession cycle in two sedimentary sequences with distinct different sedimentary accumulation rate.MTM Power spectral analyses on untuned TOC series reveals significant peaks exceeding above the 95%confidence level and shows that both Unit 1 and Unit 2 have recorded Milankovitch cycles of 405 kyr long eccentricity,short eccentricity,obliquity and precession.The floating astronomical time scale(ATS)was constructed on the Shuanghe Section in the Early Silurian(~439.673–444.681 Ma),and which was calibrated by 405 kyr long eccentricity cycles.The total duration of the Wufeng and Longmaxi shales is 5.01 Myr.The floating ATS used for estimating the duration of the graptolite zones and each stage in the study interval.Finally,we postulated two models that could verify the linkage between orbital cycle and organic accumulation.To make sure whether productivity or preservation is the main factor that under long eccentricity control,the phase correlation between the obtained filtered signal and the theoretical orbital solution should be made clear in the further research.
基金supported by National Science Foundation for Young Scientists of China(Grant 41702143)Major basic science and technology projects of CNPC(2021DJ0206-03)。
文摘The lacustrine organic-rich shale in the Permian Lucaogou(LCG)Formation of the Jimsar Sag,Junggar Basin,is one of the main shale oil plays in China.In this paper,geological and geochemical research techniques were employed to evaluate the geochemical variability of the lacustrine shale and the pro-duction of organic matter and its preservation conditions.The LcG Formation is characterized by its complex mineral compositions and a wide range of organic matter richness and quality.The presence of high proportions ofβ-carotane and C2g steranes,indicates that the organic matter mainly originated from phytoplankton and aquatic algal-bacterial organisms,especially cyanobacteria.This study found that the productivity of the Lower LCG Member(P2li)was highest,and the Middle LCG Member(P_(2)l_(2))was the lowest.During the deposition of the Lower LCG Member,the lake's bottom water was predominantly a reducing environment,and the degradation of organic matter was largely a result of bacterial sulfate reduction.During the deposition of the Middle and Upper LCG members,the lake's bottom water was mainly oxidizing,and the degradation of organic matter was likely to be caused by aerobic processes.Based on a comprehensive analysis of the origin and production of organic matter,as well as its depo-sitional environment and preservation conditions,two organic matter accumulation models were pro-posed to explain the distribution of the organic-rich shale.In model A,the high influx of volcanic ash released nutrients and brought abundant sulfate into the water,the accumulation of organic matter was mainly controlled by the preservation of organic matter,which was mainly controlled by BsR.In the model B,the influx of volcanic ash was small,organic matter was mainly degraded by oxygen and the accumulation of organic matter is mainly determined by the production of organic matter.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)National Natural Science Foundation of China(4177021173,41972120)CNPC-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX020000)。
文摘Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.
基金The National Natural Science Foundation of China under contract Nos 41976068 and 41576061。
文摘Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.
基金National Natural Science Foundation of China(No.41001321)Science and Technology Plan of Shenyang,China(No.F11-264-1-13)
文摘Substrate clogging is the worst operational problem for subsurface wastewater infiltration system ( SWIS ), nevertheless quantitative understanding of the clogging process is currently very limited. In this study, the developing process of clogging caused by organic particle accumulation and biofilm growth was investigated in two groups of lab-scale SWIS, which were fed with glucose (dissolved organic matter) and starch (particulate organic matter) influent and filled with the same substrate made of 50% brown soil and cinder at a weight of 50%. Results showed that in glucose-fed systems the growth of biofilm in the substrate pores certainly caused remarkable reduction of effective porosity, especially for the high concentration organic wastewater, whereas its influence on infiltration rate was negligible. In comparison with biofllm growth, organic particles accumulation could rapidly reduce infiltration rate and the clogging occurred in the upper layer in starch-fed systems and the most important contribution of biofilm growth to clogging was accelerating the occurrence of clogging.
基金the General Fund of the National Natural Science Foundation of China(Grant No.42272184)National Natural Science Foundation of China(Grant Nos.42230311 and 91755215)for their support of this paper。
文摘A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At present,most studies on this set of formations have focused on the reservoir characteristics and reservoir formation mechanism of the shales,and basic studies on the palaeoenvironment and organic matter(OM)enrichment mechanism have not been fully carried out.In this paper,we recovered the sedimentary palaeoenvironment by mineralogical,elemental geochemical and organic geochemical analyses,and explored the enrichment mechanism of OM under the constraints of palaeoenvironmental evolution.The shales can be divided into two stages of sedimentary evolution:compared with the shales of the Lower Longtan Formation,the shales of the Upper Longtan Formation are relatively rich in quartz,poor in clay and carbonate minerals,and the OM type changes from typeⅢto typeⅡ_(2).The depositional environment has undergone a change from sea level rise,from warm and wet climate to dry and cold climate,and from oxygen-poor condition restricted to open reduction environment;the land source input has decreased,the siliceous mineral content has increased,the biological productivity has improved,and the deposition rate has changed from high to low.A depositional model was established for the shales of the Longtan Formation,reflecting the differential reservoir formation pattern of organic matter.For the Lower Longtan Formation shales,the most important factors controlling OM content are terrestrial source input and deposition rate,followed by paleoclimate and paleooxygen conditions.For the Upper Longtan Formation shales,the most important controlling factor is paleo-productivity,followed by sedimentation rate.The depositional model constructed for the Upper and Lower Longtan Formation shales can reproduce the enrichment of organic matter and provide a basis for later exploration and development.
基金jointly supported by the Scientific Research and Technological Development Programs of CNPC(2021yjcq02 and 2021DJ2001)。
文摘The commercial exploitation of unconventional petroleum resources(e.g.,shale oil/gas and tight oil/gas)has drastically changed the global energy structure within the past two decades.Sweet-spot intervals(areas),the most prolific unconventional hydrocarbon resources,generally consist of extraordinarily high organic matter(EHOM)deposits or closely associated sandstones/carbonate rocks.The formation of sweet-spot intervals(areas)is fundamentally controlled by their depositional and subsequent diagenetic settings,which result from the coupled sedimentation of global or regional geological events,such as tectonic activity,sea level(lake level)fluctuations,climate change,bottom water anoxia,volcanic activity,biotic mass extinction or radiation,and gravity flows during a certain geological period.Black shales with EHOM content and their associated high-quality reservoir rocks deposited by the coupling of major geological events provide not only a prerequisite for massive hydrocarbon generation but also abundant hydrocarbon storage space.The Ordovician-Silurian Wufeng-Longmaxi shale of the Sichuan Basin,Devonian Marcellus shale of the Appalachian Basin,Devonian-Carboniferous Bakken Formation of the Williston Basin,and Triassic Yanchang Formation of the Ordos Basin are four typical unconventional hydrocarbon systems selected as case studies herein.In each case,the formation of sweet-spot intervals for unconventional hydrocarbon resources was controlled by the coupled sedimentation of different global or regional geological events,collectively resulting in a favorable environment for the production,preservation,and accumulation of organic matter,as well as for the generation,migration,accumulation,and exploitation of hydrocarbons.Unconventional petroleum sedimentology,which focuses on coupled sedimentation during dramatic environmental changes driven by major geological events,is key to improve the understanding of the formation and distribution of sweet-spot intervals(areas)in unconventional petroleum systems.
基金The National Key Science and Technology Special Project(13th Five Year Plan)of the Key Technology of Gas and Oil Exploration in Offshore Deep Water Area(Phase 3)under contract No.2016Zx05026
文摘The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S2, oil-base mud has certain impact on Rock-Eval S1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.
文摘Phenol, a ubiquitous component of industrial effluents, is a common pollutant of water resources and a serious threat to fish.The present work demonstrates that a significant amount of phenol is retained by various tissues of the common carp.Cyprinus carpio.and the snake-headed murrel.Channa punclatus.The rate of [^(14)C] phenol accumulation was higher in the carp than in the murrel.It is suggested that retention of phenol in the brain and ovary may seriously afiect the reproductive potential of the fish. 1990 Academic Press.Inc.
基金funded by the National Natural Science Foundation of China (31640012, 41271007, 31660232)the One Hundred Person Project of the Chinese Academy of Sciences (Y551821)+1 种基金the Opening Foundation of the State Key Laboratory Breeding Base of DesertificationAeolian Sand Disaster Combating, Gansu Desert Control Research Institute (GSDC201505)
文摘Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions in semi-arid sandy lands. In the present study, we examined the effects of Caragana microphylla Lam. plantations with different ages(12-and 25-year-old) on sequestrations of total SOC as well as labile SOC fractions such as light fraction organic carbon(LFOC) and microbial biomass carbon(MBC). The analyzed samples were taken from soil depths of 0–5 and 5–15 cm under two shrub-related scenarios: under shrubs and between shrubs with moving sand dunes as control sites in the Horqin Sandy Land of northern China. The results showed that the concentrations and storages of total SOC at soil depths of 0–5 and 5–15 cm were higher in 12-and 25-year-old C. microphylla plantations than in moving sand dunes(i.e., control sites), with the highest value observed under shrubs in 25-year-old C. microphylla plantations. Furthermore, the concentrations and storages of LFOC and MBC showed similar patterns with those of total SOC at the same soil depth. The 12-year-old C. microphylla plantations had higher percentages of LFOC concentration to SOC concentration and MBC concentration to SOC concentration than the 25-year-old C. microphylla plantations and moving sand dunes at both soil depths. A significant positive correlation existed among SOC, LFOC, and MBC, implying that restoring the total and labile SOC fractions is possible by afforestation with C. microphylla shrubs in the Horqin Sandy Land. At soil depth of 0–15 cm, the accumulation rate of total SOC under shrubs was higher in young C. microphylla plantations(18.53 g C/(m^2·a); 0–12 years) than in old C. microphylla plantations(16.24 g C/(m^2·a); 12–25 years), and the accumulation rates of LFOC and MBC under shrubs and between shrubs were also higher in young C. microphylla plantations than in old C. microphylla plantations. It can be concluded that the establishment of C. microphylla in the Horqin Sandy Land may be a good mitigation strategy for SOC sequestration in the surface soils.
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金Supported by Zhaoqing University Innovation and Entrepreneurship Training Program for College Students(202310580018).
文摘[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.
基金supported by the National Natural Science Foundation of China (No. 50508011).
文摘Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) protocol was employed for revealing microbial community structure and succession in a sequential anaerobic and aerobic reactor performing enhanced biological phosphorus removal (EBPR) during start-up period. High phosphorus removal was achieved after 15 d. On day 30, phosphorus removal efficiency reached to 83.2% and the start-up was finished. DGGE profiles of periodical sludge samples showed that dominant microbial species were 19 OTUs (operational taxonomy units). Unweighted pair-group method using arithmetic averages (UPGMA) clustering analysis revealed that rapid community succession correlated to low phosphorus removal rate and high phosphorus removal efficiency reflected on steady community structure. Sequencing results indicated that determined sequences (12 OTUs) belonged to Proteobacterium, Actinobacteria, Gemmatimonadales and unaffiliate group. Proteobacterium, Tetrasphaera elongate and Gemmatimonas aurantiaca may act important roles in phosphorus removal. With little amount as known glycogen accumulating organisms, Candidatus Competibacter phosphatis still at accumulating-phase had limited effect on microbial community structure. When climax community was obtained, dominant microbes were 14 OTUs. Microbes in a large amount were uncultured bacterium Thauera sp., uncultured y-Proteobacterium and Tetrasphaera elongata.
基金supported by the National Key Scientific and Technological Project (No.2006BAC01A14)the Shanghai Key Scientific and Technological Project (No.06DZ12302)
文摘We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Observed differences were investigated based on the microbial activity and environmental factors of the soil at the two sites. Results showed that the organic carbon content of wetland soil vegetated with Phragmites australis (site A) was markedly lower than that with P. australis and Spartina alterniflora (site B). Sites differences were due to higher microbial activity at site A, which led to higher soil respiration intensity and greater carbon outputs. This indicated that the capability of organic carbon accumulation of the site B soils was greater than at site A. In addition, petroleum pollution and soil salinity were different in the two wetland soils. After bio-remediation, the soil petroleum pollution at site B was reduced to a similar level of site A. However, the culturable microbial biomass and enzyme activity in the remediated soils were also lower than at site A. These results indicated that greater petroleum pollution at site B did not markedly inhibit soil microbial activity. Therefore, differences in vegetation type and soil salinity were the primary factors responsible for the variation in microbial activity, organic carbon output and organic carbon accumulation capability between site A and site B.
文摘Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake via nitrite was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor((AO)2 SBR). The system showed stable phosphorus and nitrogen removal performance, and average removals for COD, TN and TP were 90%, 91% and 96%, respectively. The conditions of pH 7.5—8.0 and temperature 32℃ were found detrimental to nitrite oxidation bacteria but favorable to ammonia oxidizers, and the corresponding specific oxygen uptake rates(SOUR) for phase 1 and 2 of nitrification process were 0.7 and 15 mgO 2/(gVSS·h) in respect, which led to the nitrite accumulation in aerobic phase of(AO)2 SBR. Respiratory tests showed that 40 mgNO 2-N/L did not deteriorate the sludge activity drastically, and it implied that exposure of sludge to nitrite periodically enabled the biomass to have more tolerance capacity to resist the restraining effects from nitrite. In addition, batch tests were carried out and verified that denitrifying phosphorus accumulation organisms(DPAOs) could be enriched in a single sludge system coexisting with nitrifiers by introducing an anoxic phase in an anaerobic-aerobic SBR, and the ratio of the anoxic phosphate uptake capacity to aerobic phosphate uptake capacity was 45%. It was also found that nitrite(up to 20 mgNO 2-N/L) was not inhibitory to anoxic phosphate uptake and could serve as an electron acceptor like nitrate, but presented poorer efficiency compared with nitrate.
文摘A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.
基金Financial supports from the National Basic Research Program of China(2011CB100501)the National Natural Science Foundation of China(41171239,41371247)are gratefully acknowledged
文摘In order to reveal the impact of various fertilization strategies on carbon(C) and nitrogen(N) accumulation and allocation in corn(Zea mays L.), corn was grown in the fields where continuous fertilization management had been lasted about 18 years at two sites located in Central and Northeast China(Zhengzhou and Gongzhuling), and biomass C and N contents in different organs of corn at harvest were analyzed. The fertilization treatments included non-fertilizer(control), chemical fertilizers of either nitrogen(N), or nitrogen and phosphorus(NP), or phosphorus and potassium(PK), or nitrogen, phosphorus and potassium(NPK), NPK plus manure(NPKM), 150% of the NPKM(1.5NPKM), and NPK plus straw(NPKS). The results showed that accumulated C in aboveground ranged from 2 550–5 630 kg ha^–1 in the control treatment to 9 300–9 610 kg ha^–1 in the NPKM treatment, of which 57–67% and 43–50% were allocated in the non-grain organs, respectively. Accumulated N in aboveground ranged from 44.8–55.2 kg ha^-1 in the control treatment to 211–222 kg ha^–1 in the NPKM treatment, of which 35–48% and 33–44% were allocated in the non-grain parts, respectively. C allocated to stem and leaf for the PK treatment was 65 and 49% higher than that for the NPKM treatment at the both sites, respectively, while N allocated to the organs for the PK treatment was 18 and 6% higher than that for the NPKM treatment, respectively. This study demonstrated that responses of C and N allocation in corn to fertilization strategies were different, and C allocation was more sensitive to fertilization treatments than N allocation in the area.
基金Sponsored by the Key Project of the National Natural Science Foundation of China (Grant No. 50638020)
文摘The objective of this work is to verify a hypothesis that nitrite accumulation comes from the metabolites of denitrification phosphate accumulating organisms (DPAOs),not denitrifying bacteria.On the precondition of the restriction of denitrifying bacteria in anoxic phase,static experimental test was designed using NO3-as electron acceptor,effluent was removed after sedimentation in anaerobic phase,and the same concentration solution of PO43--P was returned,so that TOC was excluded and denitrification was inhibited in the next phases.A parallel experiment was carried out simultaneously with the normal anaerobic-anoxic progress.The results showed that,in static test,by keeping the normal growth of DPAO and inhibiting denitrification of denitrifying bacteria,P-release in anaerobic and P-uptake in anoxic phase proceeded normally.DPAO had obvious effect on P-removal and the P-removal efficiency was 69%.The effluent concentration of NO3--N and NO2--N was 7.62 mg/L and 6.05 mg/L respectively,compared with parallel experiments,and nitrogen removal rate was lower.No nitrite residue was found in parallel test.Therefore,it can confirm the hypothesis that the metabolites of DPAO are both nitrogen and nitrite when nitrate is taken as electron acceptor,and nitrite is subsequently converted to nitrogen by denitrifying bacteria.