For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti...For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinom...BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.展开更多
Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinflu...Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.展开更多
This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores diffe...This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.展开更多
Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the at...Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.展开更多
The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy r...The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy resources.Extensive analysis of methane(CH_(4))and other organics in diverse geologic settings,combined with thermodynamic modelings and laboratory simulations,have yielded insights into the distribution of specific abiotic organic molecules on Earth and the favorable conditions and pathways under which they form.This updated and comprehensive review summarizes published results of petrological,thermodynamic,and experimental investigations of possible pathways for the formation of particular species of abiotic simple hydrocarbon molecules such as CH_(4),and of complex hydrocarbon systems,e.g.,long-chain hydrocarbons and even solid carbonaceous matters,in various geologic processes,distinguished into three classes:(1)pre-to early planetary processes;(2)mantle and magmatic processes;and(3)the gas/water-rock reaction processes in low-pressure ultramafic rock and high-pressure subduction zone systems.We not only emphasize how organics are abiotically synthesized but also explore the role or changes of organics in evolutionary geological environments after synthesis,such as phase transitions or organic-mineral interactions.Correspondingly,there is an urgent need to explore the diversity of abiotic organic compounds prevailing on Earth.展开更多
The asthmatic inflammatory process results in the generation of volatile organic compounds(VOCs),which are subsequently secreted by the airways.The study of these elements through gas chromatography-mass spectrometry(...The asthmatic inflammatory process results in the generation of volatile organic compounds(VOCs),which are subsequently secreted by the airways.The study of these elements through gas chromatography-mass spectrometry(GC-MS),which can identify individual molecules with a discriminatory capacity of over 85%,and electronic-Nose(e-NOSE),which is able to perform a quick onboard pattern-recognition analysis of VOCs,has allowed new prospects for non-invasive analysis of the disease in an"omics"approach.In this review,we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics.Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults,as well as differential diagnosis between asthma and other conditions such as wheezing,cystic fibrosis,COPD,allergic rhinitis and last but not least,the accuracy of these methods compared to other diagnostic tools such as lung function,FeNO and eosinophil count.Due to significant limitations of both methods,it is still necessary to improve and standardize techniques.Currently,e-NOSE appears to be the most promising aid in clinical practice,whereas GC-MS,as the gold standard for the structural analysis of molecules,remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process.In conclusion,the study of VOCs through GC-MS and e-NOSE appears to hold promise for the noninvasive diagnosis,assessment,and monitoring of asthma,as well as for further research studies on the disease.展开更多
In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based var...In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based varnish to simulate VOCs,respectively.By measuring the compounds and contents of the mixture gas before/after the microwave plasma process,we have calculated the treatment efficiency of AMPT.The experimental results show that the treatment efficiency of AMPT for toluene with a concentration of 17.32×10^(4) ppm is up to 60 g/kWh with the removal rate of 86%.For the volatile compounds of water-based varnish,the removal efficiency is up to 97.99%.We have demonstrated the higher potential for VOCs removal of the AMPT process.展开更多
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
Goethite, a typical iron-containing monomineral in red mud, was synthesized under the simulated Bayer digestion condition during the alumina production. The effects of dissolved organic compounds including sodium ...Goethite, a typical iron-containing monomineral in red mud, was synthesized under the simulated Bayer digestion condition during the alumina production. The effects of dissolved organic compounds including sodium formate, sodium acetate, sodium oxalate, sodium salicylate and disodium phthalate on the settling performance of goethite slurries were studied. The settling performance of the slurries was also investigated with the addition of self-made hydroxamated polyacrylamide flocculant (HCPAM). The adsorption mechanism of dissolved organic compounds on the goethite surfaces was studied by FT-IR and XPS, respectively. The results show that the addition of organic compounds lowers the settling performance of the slurries and a deterioration in settling performance is observed in the order of sodium oxalate 〉 sodium salicylate (~ disodium phthalate) 〉 sodium formate 〉 sodium acetate. Moreover, HCPAM can efficiently eliminate the negative effects of sodium formate, sodium acetate and sodium oxalate on the settling performance of the goethite slurries, but it can only partially improve the settling performance of the goethite slurries containing sodium salicylate or disodium phthalate. FT-IR and XPS results show that these organic compounds are chemically adsorbed on the goethite surface.展开更多
Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the d...Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.展开更多
The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost...The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost environment.The mechanical properties,viscosity average molecular weight (M η) of PE and hydroperoxide (POOH) concentration in the samples were measured.FT IR and DSC were also applied to characterize some samples.It was shown that the above mentioned metallic organic compounds can catalyze the degradation of LDPE efficiently.After 2 months aging,all samples with catalysts became fragile and the M η of the material decreased dramatically.Furthermore,the concentration of carbonyl and the degree of crystallinity of the material increased with the aging time.展开更多
Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs...Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.展开更多
A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- ...A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.展开更多
The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spec...The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 μg/m^3 in the new vehicle A, 1240 μg/m^3 in used vehicle B, and 132 μg/m^3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h^-1 to 0.67 h^-1, and in-vehicle TVOC concentration decreases from 1780 to 1201 μg/m^3.展开更多
The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured ...The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.展开更多
Three treatments were tested to investigate the release concentrations of volatile organic compounds (VOCs) during the bio-drying of municipal solid waste (MSW) by the aerobic and combined hydrolytic-aerobic proce...Three treatments were tested to investigate the release concentrations of volatile organic compounds (VOCs) during the bio-drying of municipal solid waste (MSW) by the aerobic and combined hydrolytic-aerobic processes.Results showed that VOCs were largely released in the first 4 days of bio-drying and the dominant components were:dimethyl disulfide,dimethyl sulfide,benzene,2-butanone,limonene and methylene chloride.Thus,the combined hydrolytic-aerobic process was suggested for MSW bio-drying due to fewer aeration quantities in this phase when compared with the aerobic process,and the treatment strategies should base on the key properties of these prominent components.Malodorous sulfur compounds and terpenes were mainly released in the early phase of bio-drying,whereas,two peaks of release concentrations appeared for aromatics and ketones during bio-drying.Notably,for the combined hydrolytic-aerobic processes there were also high concentrations of released aromatics in the shift from hydrolytic to aerobic stages.High concentrations of released chlorinateds were observed in the later phase.For the VOCs produced during MSW bio-drying,i.e.,malodorous sulfur compounds,terpenes and chlorinateds,their release concentrations were mainly determined by production rates;for the VOCs presented initially in MSW,such as aromatics,their transfer and transport in MSW mainly determined the release concentrations.展开更多
A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological ...A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological component immobilized in intimate contact with a transducer which converts the biochemical signal into a quantifiable electrical signal. Toxicity assessment of heavy metals using E.coli biosensors could be finished within 30 min and the 50% effective concentrations (ECso) values of four heavy metals were determined. The results shows that inhibitory effects of four heavy metals to E.coli can be ranked in a decreasing order of Hg^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Ni^2+, which accords to the results of conventional bacterial counting method. The toxicity test of organic compounds by using CellSense biosensor was also demonstrated. The CellSense biosensor with E. coli shows a good, reproducible behavior and can be used for reproducible measurements.展开更多
文摘For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
基金The study protocol was reviewed and approved by the Institutional Research Committee,Faculty of Medicine,Chulalongkorn University(No.0482/65)registered in the Thai Clinical Trials Registry(TCTR20211109002).
文摘BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.
基金the National Natural Science Foundation of China(52378460 and 51878526)the Program Fund of Non-metallic Excellent and Innovation Center for Building Materials(Grants 2024TDA-3)Knowledge Innovation Program of Wuhan-Basic Research from the Wuhan Science and Technology Bureau(2022020801010176)are gratefully acknowledged.
文摘Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.
文摘This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.
文摘Volatile organic compounds (VOCs) are an atmospheric pollutant with a boiling point of 50˚C - 260˚C at room temperature and pressure. They are precursors of sulfur dioxide and ozone, which can seriously pollute the atmosphere and endanger human health. After the “14th Five-Year Plan”, VOCs, instead of SO2, became one of the five indicators of China’s atmospheric governance. As a result, the government’s efforts to control VOCs have increased significantly. VOCs governance mustn’t be delayed. This paper provides a comprehensive summary and analysis of VOCs governance, covering the classification of VOCs, analysis of VOC governance technology (with a focus on end-of-pipe governance technology), national policy regulations, current governance shortcomings, and a forward-looking perspective on the future direction of VOCs governance, emphasizing healthy and sustainable development.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFA0708501)the NSFC Major Research Plan on West-Pacific Earth System Multispheric Interactions(Grant No.92158206)。
文摘The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance,by chemosynthetic biological communities,and for energy resources.Extensive analysis of methane(CH_(4))and other organics in diverse geologic settings,combined with thermodynamic modelings and laboratory simulations,have yielded insights into the distribution of specific abiotic organic molecules on Earth and the favorable conditions and pathways under which they form.This updated and comprehensive review summarizes published results of petrological,thermodynamic,and experimental investigations of possible pathways for the formation of particular species of abiotic simple hydrocarbon molecules such as CH_(4),and of complex hydrocarbon systems,e.g.,long-chain hydrocarbons and even solid carbonaceous matters,in various geologic processes,distinguished into three classes:(1)pre-to early planetary processes;(2)mantle and magmatic processes;and(3)the gas/water-rock reaction processes in low-pressure ultramafic rock and high-pressure subduction zone systems.We not only emphasize how organics are abiotically synthesized but also explore the role or changes of organics in evolutionary geological environments after synthesis,such as phase transitions or organic-mineral interactions.Correspondingly,there is an urgent need to explore the diversity of abiotic organic compounds prevailing on Earth.
文摘The asthmatic inflammatory process results in the generation of volatile organic compounds(VOCs),which are subsequently secreted by the airways.The study of these elements through gas chromatography-mass spectrometry(GC-MS),which can identify individual molecules with a discriminatory capacity of over 85%,and electronic-Nose(e-NOSE),which is able to perform a quick onboard pattern-recognition analysis of VOCs,has allowed new prospects for non-invasive analysis of the disease in an"omics"approach.In this review,we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics.Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults,as well as differential diagnosis between asthma and other conditions such as wheezing,cystic fibrosis,COPD,allergic rhinitis and last but not least,the accuracy of these methods compared to other diagnostic tools such as lung function,FeNO and eosinophil count.Due to significant limitations of both methods,it is still necessary to improve and standardize techniques.Currently,e-NOSE appears to be the most promising aid in clinical practice,whereas GC-MS,as the gold standard for the structural analysis of molecules,remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process.In conclusion,the study of VOCs through GC-MS and e-NOSE appears to hold promise for the noninvasive diagnosis,assessment,and monitoring of asthma,as well as for further research studies on the disease.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFF0102100the Pre-Research Project of Civil Aerospace Technology of China under Grant No.D040109.
文摘In this study,we investigated the abatement of volatile organic compounds(VOCs)by the atmospheric pressure microwave plasma torch(AMPT).To study the treatment efficiency of AMPT,we used the toluene and water-based varnish to simulate VOCs,respectively.By measuring the compounds and contents of the mixture gas before/after the microwave plasma process,we have calculated the treatment efficiency of AMPT.The experimental results show that the treatment efficiency of AMPT for toluene with a concentration of 17.32×10^(4) ppm is up to 60 g/kWh with the removal rate of 86%.For the volatile compounds of water-based varnish,the removal efficiency is up to 97.99%.We have demonstrated the higher potential for VOCs removal of the AMPT process.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
基金Projects(51174231,51134007)supported by the National Natural Science Foundation of China
文摘Goethite, a typical iron-containing monomineral in red mud, was synthesized under the simulated Bayer digestion condition during the alumina production. The effects of dissolved organic compounds including sodium formate, sodium acetate, sodium oxalate, sodium salicylate and disodium phthalate on the settling performance of goethite slurries were studied. The settling performance of the slurries was also investigated with the addition of self-made hydroxamated polyacrylamide flocculant (HCPAM). The adsorption mechanism of dissolved organic compounds on the goethite surfaces was studied by FT-IR and XPS, respectively. The results show that the addition of organic compounds lowers the settling performance of the slurries and a deterioration in settling performance is observed in the order of sodium oxalate 〉 sodium salicylate (~ disodium phthalate) 〉 sodium formate 〉 sodium acetate. Moreover, HCPAM can efficiently eliminate the negative effects of sodium formate, sodium acetate and sodium oxalate on the settling performance of the goethite slurries, but it can only partially improve the settling performance of the goethite slurries containing sodium salicylate or disodium phthalate. FT-IR and XPS results show that these organic compounds are chemically adsorbed on the goethite surface.
基金Supported by the State Science Foundation of China (No. 20737001)
文摘Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.
文摘The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost environment.The mechanical properties,viscosity average molecular weight (M η) of PE and hydroperoxide (POOH) concentration in the samples were measured.FT IR and DSC were also applied to characterize some samples.It was shown that the above mentioned metallic organic compounds can catalyze the degradation of LDPE efficiently.After 2 months aging,all samples with catalysts became fragile and the M η of the material decreased dramatically.Furthermore,the concentration of carbonyl and the degree of crystallinity of the material increased with the aging time.
基金supported by the Tianjin Fundamental Research Program of the Tianjin Committee of Science and Technology (Grant No. 10JCYBJC050800)the National Special Science and Technology Program for Non-Profit Industry of the Ministry of Environmental Protection (Grant No. 200909022)+2 种基金the 973 Program (Grant No. 2011CB403402)the National Natural Science Foundation of China (NSFC) (Grant No. 40875001)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2008Z011)
文摘Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.
文摘A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.
文摘The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 μg/m^3 in the new vehicle A, 1240 μg/m^3 in used vehicle B, and 132 μg/m^3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h^-1 to 0.67 h^-1, and in-vehicle TVOC concentration decreases from 1780 to 1201 μg/m^3.
基金supported by the National Basic Re-search Program (973) of China (No. 2007CB407303)the National Natural Science Foundation of China (No.40525016)the Hi-Tech Research and Development Program (863) of China (No. 2006AA06A301).
文摘The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.
基金financially supported by the National Key Technology R&D Program of China (No.2006BAC06B04,2008BAJ08B13)
文摘Three treatments were tested to investigate the release concentrations of volatile organic compounds (VOCs) during the bio-drying of municipal solid waste (MSW) by the aerobic and combined hydrolytic-aerobic processes.Results showed that VOCs were largely released in the first 4 days of bio-drying and the dominant components were:dimethyl disulfide,dimethyl sulfide,benzene,2-butanone,limonene and methylene chloride.Thus,the combined hydrolytic-aerobic process was suggested for MSW bio-drying due to fewer aeration quantities in this phase when compared with the aerobic process,and the treatment strategies should base on the key properties of these prominent components.Malodorous sulfur compounds and terpenes were mainly released in the early phase of bio-drying,whereas,two peaks of release concentrations appeared for aromatics and ketones during bio-drying.Notably,for the combined hydrolytic-aerobic processes there were also high concentrations of released aromatics in the shift from hydrolytic to aerobic stages.High concentrations of released chlorinateds were observed in the later phase.For the VOCs produced during MSW bio-drying,i.e.,malodorous sulfur compounds,terpenes and chlorinateds,their release concentrations were mainly determined by production rates;for the VOCs presented initially in MSW,such as aromatics,their transfer and transport in MSW mainly determined the release concentrations.
基金supported by the National Natural Science Foundation of China(No.20707014)the Program for Young Excellent Talents of Tongji University.
文摘A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological component immobilized in intimate contact with a transducer which converts the biochemical signal into a quantifiable electrical signal. Toxicity assessment of heavy metals using E.coli biosensors could be finished within 30 min and the 50% effective concentrations (ECso) values of four heavy metals were determined. The results shows that inhibitory effects of four heavy metals to E.coli can be ranked in a decreasing order of Hg^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Ni^2+, which accords to the results of conventional bacterial counting method. The toxicity test of organic compounds by using CellSense biosensor was also demonstrated. The CellSense biosensor with E. coli shows a good, reproducible behavior and can be used for reproducible measurements.