Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilize...Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels.N fertilizer rates had 0,50,100,150,200,and 250 g N/plant.Organic fertilizer rates had 0,2,4,6,8,and 10 kg organic fertilizer/plant.The experimental treatments included 6 combinations of N0M10,N50M8,N100M6,N150M4,N200M2,and control was N250M0.The results showed that in the high-fertility soils,combinations of N150M4,N100M6 and N50M8 treatments were increased in yields,fruit shape index,flavonoid content,total phenol content,mineral nutrient content,and antioxidant activity of wolfberry fruits.Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm.In the soil with less fertility,fruit yield,amino acid contents,flavonoids,total phenols,mineral nutrients and antioxidant activity of fruits were increased by the N200M2,N150M4 and N100M6 treatments and soil fertility was improved as well.Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control.Therefore,in the Qinghai-Tibet Plateau,combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching.In conclusion,50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation.展开更多
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical...Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.展开更多
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity...[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.展开更多
The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined...The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined, so as to provide techni- cal guidance for reasonable use and improving use efficiency of nitrogen fertilizer for different types of crops. Compared with the control with nitrogen but unplanted crop, growing soybean, cotton, maize, sorghum significantly decreased the soil available N contents by 53. 48%, 51.54%, 33.10%, 55.03%,and influenced the constitution of soil available N. Thereinto, growing soybean, cotton, maize and sorghum significantly decreased soil inorganic N contents by 85.41%, 83.09%, 70.89% and 83.35%,but increased soil hydrolysable organic N contents by 1.41, 1.53, 2.11 and 1.28 times, respectively; growing soybean, cotton, maize and sorghum significantly decreased the rate of soil inorganic N to available N by 68.61%, 65.09%, 56.47% and 63.00%, but increased the rate of soil hydrolysable organic N to available N by 4.18, 4.21, 3.66 and 4.08 times, respectively. Compared with the control, growing soybean, cotton, maize and sorghum significantly increased the transform rate of ammonium nitrogen fertilizer by 93.66%, 38.19%, 32.58% and 38.31% respectively, and growing soybean treatment had the highest increasing range; the nitrification rates of ammo- nium nitrogen fertilizer of growing soybean, cotton, maize and sorghum treatments were negative values, and growing soybean treatment had the highest decreasing amplitude. The ammonium nitrogen fertilizer use efficiency of growing soybean, cot- ton, maize and sorghum treatments were 52.01%, 28.31%, 24.16% and 28.40% re- spectively and growing soybean treatment had the highest value. In conclusion, growing crops suppressed the soil nitrification and accelerated the development of soil hydrolysable organic nitrogen by the utilization of soil available nitrogen and the alteration of soil environment, and hence impacted the constitution of soil available nitrogen and the transform and use of ammonium nitrogen applied in soil. Legumi- nous crops had stronger ability of suppressing nitrification, making use of ammonium compared with non-Leguminous crops.展开更多
In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the ...In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.展开更多
Changes in the distribution of soil aggregate sizes and concentrations of aggregate-associated organic carbon (OC) and nitrogen (N) in response to the fertilization of grasslands are not well understood. Understan...Changes in the distribution of soil aggregate sizes and concentrations of aggregate-associated organic carbon (OC) and nitrogen (N) in response to the fertilization of grasslands are not well understood. Understanding these changes is essential to the sustainable development of artificial grasslands. For understanding these changes, we collected soil samples at 0-20 and 20-40 cm depths from a semi-arid artificial alfalfa grassland after 27 years of applications of phosphorus (P) and nitrogen+phosphorus+manure (NPM) fertilizers on the Loess Pla- teau of China. The distribution of aggregate sizes and the concentrations and stocks of OC and N in total soils were determined. The results showed that NPM treatment significantly increased the proportions of 〉2.0 mm and 2.0-0.25 mm size fractions, the mean geometric diameter (MGD) and the mean weight diameter (MWD) in the 0-20 cm layer. Phosphorous fertilizer significantly increased the proportion of 〉2.0 mm size fractions, the MGD and the MWD in the 0-20 cm layer. Long-term application of fertilization (P and NPM) resulted in the accumulation of OC and N in soil aggregates. The largest changes in aggregate-associated OC and N in the 0-20 cm layer were found at the NPM treatment, whereas the largest changes in the 20-40 cm layer were found at the P treatment. The results suggest that long-term fertilization in the grassland leads to the accumulation of OC and N in the coarse size fractions and the redistribution of OC and N from fine size fractions to coarse size fractions.展开更多
Soil samples collected from a 25-year long-term fertilizer experiment carried out on the Earth-cumulic-Orthic Anthrosols in semi-humid farmland ecological system, were used to study the distribution of soil organic ma...Soil samples collected from a 25-year long-term fertilizer experiment carried out on the Earth-cumulic-Orthic Anthrosols in semi-humid farmland ecological system, were used to study the distribution of soil organic matters, total nitrogen, nitrate nitrogen, and ammoniate nitrogen in different grades of soil macro-aggregates in order to study the effects of long-term application of organic manures in combination with chemical fertilizers. It is showed that the percentage of mass of the soil macro-aggregates with long-term application of fertilizers with sizes of 5-2 mm is increased compared with that of the samples with no fertilizer. It is easier to form lager size soil macro-aggregates by the long-term application of organic manures in combination with chemical fertilizers. The contents of organic matters, total nitrogen and nitrate nitrogen are all higher after treatments with different combinations of fertilizers, while there is a little effect on the contents of ammoniate nitrogen. The contents of organic matters, total nitrogen in the grades of soil macro-aggregates from the plough layers of the treated farmland exhibited significant difference. Moreover, the contents of organic matters and total nitrogen in the soil macro-aggregates with the size of 1-0.25 mm is the highest in all treated soil samples. The contents of nitrate nitrogen in soil macro-aggregates increased with the increasing of soil macro-aggregate size except those applied with chemical fertilizer and lower amount of corn stover. The results of correlation analysis revealed that there exists a significantly positive correlation between the percentage of mass of soil macro-aggregates with the size of 5-2 mm and the contents of organic matters, total nitrogen and nitrate nitrogen in the soil samples. However, the correlation between the percentage of mass of soil macro-aggregates with the size of 1-0.25 rnm and the contents of total nitrogen and nitrate nitrogen is significantly negative.The study showed that the highest contributing rates of macro-aggregates fractions to soil fertility is from the soil macro-aggregates fraction with the size of 1-0.25 mm in most of the cases.展开更多
In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and...In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.展开更多
We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice variet...We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice varieties were assigned as main plot factors,and the integrated treatments were the subplot factors,including no-N fertilizer(N0),50%chemical fertilizer(CF)(CF50),100%CF(CF100),50%CF+50%poultry manure(PM)(CF50PM50),50%CF+50%cow manure(CM)(CF50CM50),and 50%CF+50%compost(CP)(CF50CP50).CF100 was equivalent to N at 85 kg/hm2.Manure was applied based on the estimated mineralizable nitrogen(EMN)level,which is dependent on total N(%)of each manure type.Manawthukha rice plants were taller with higher tiller number and dry matter content.However,higher soil-plant analysis development(SPAD)values were measured in Genkitsukushi throughout the crop growth period,resulting in higher seed-setting rate(%)and greater yield.At the same N level,CF50PM50 application in both rice varieties resulted in higher SPAD values,plant height and tiller number than CF100.CF50PM50 containing total N more than 4%supplied synchronized N for the demands of the rice plants,resulting in maximum dry matter,yield and yield components.CF50CM50 and CF50CP50 treatments containing total N less than 4%resulted in lower yields which were similar to CF100.These results indicated that integrating organic and inorganic fertilizers enhanced growth parameters and yields of Manawthukha and Genkitsukushi,while reducing the dose of chemical fertilizer.展开更多
Nitrogen (N) leaching in vegetable fields from December 2002 to May 2003 with equal dressings of total N for asequential rotation of Chinese flat cabbage (Brassica chinensis L. var. rosularis) and lettuce (Lactuca sat...Nitrogen (N) leaching in vegetable fields from December 2002 to May 2003 with equal dressings of total N for asequential rotation of Chinese flat cabbage (Brassica chinensis L. var. rosularis) and lettuce (Lactuca sativa L.) in asuburban major vegetable production base of Shanghai were examined using the lysimeter method to provide a scientificbasis for rational utilization of nitrogen fertilizers so as to prevent nitrogen pollution of water resources. Results showedthat leached N consisted mainly of nitrate N, which accounted for up to more than 90% of the total N loss and couldcontribute to groundwater pollution. Data also showed that by partly substituting chemical N (30%) in a basal dressingwith equivalent N of refined organic fertilizer in the Chinese flat cabbage field, 64.5% of the leached nitrate N was reduced,while in the lettuce (Lactuca sativa L.) field, substituting 1/2 of the chemical N in a basal dressing and 1/3 of the chemicalN in a top dressing with equivalent N of refined organic fertilizers reduced 46.6% of the leached nitrate N. In the two-year sequential rotation system of Chinese flat cabbage and lettuce, nitrate-N leaching in the treatment with the highestamount of chemical fertilizer was up to 46.55 kg ha-1, while treatment plots with the highest amount of organic fertilizerhad only 17.58 kg ha-1. Thus, partly substituting refined organic fertilizer for chemical nitrogen in the first two seasonshas a great advantage of reducing nitrate-N leaching.展开更多
A field experiment was conducted at the farm of Yangzhou University, Yangzhou, China, to study the effects of organic fertilizers made from maize straw on rice grain yield and the emission of greenhouse gases. Four or...A field experiment was conducted at the farm of Yangzhou University, Yangzhou, China, to study the effects of organic fertilizers made from maize straw on rice grain yield and the emission of greenhouse gases. Four organic fertilizer treatments were as follows: maize straw (MS), compost made from maize straw (MC), methane-generating maize residue (MR), and black carbon made from maize straw (BC). These organic fertilizers were applied separately to paddy fields before rice transplanting. No organic fertilizer was applied to the control (CK). The effects of each organic fertilizer on rice grain yield and emission of greenhouse gases were investigated under two conditions, namely, no nitrogen (N) application (ON) and site-specific N management (SSNM). Rice grain yields were significantly higher in the MS, MC and MR treatments than those in CK under either ON or SSNM. The MS treatment resulted in the highest grain yield and agronomic N use efficiency. However, no significant difference was observed for these parameters between the BC treatment and CK. The changes in the emissions of methane (CH4) carbon dioxide (CO2), or nitrous oxide (N20) from the fields were similar among all organic fertilizer treatments during the entire rice growing season. The application of each organic fertilizer significantly increased the emission of each greenhouse gas (except N20 emission in the BC treatment) and global warming potential (GWP). Emissions of all the greenhouse gases and GWP increased under the same organic fertilizer treatment in the presence of N fertilizer, whereas GWP per unit grain yield decreased. The results indicate that the application of organic fertilizer (MS, MC or MR) could increase grain yield, but also could enhance the emissions of greenhouse gases from paddy fields. High grain yield and environmental efficiency could be achieved by applying SSNM with MR.展开更多
Dry matter production and productivity of stem currently are being widely studied in sugarcane, reinforcing the study in question, which aims to assess the accumulation of dry matter of the aerial segment and the prod...Dry matter production and productivity of stem currently are being widely studied in sugarcane, reinforcing the study in question, which aims to assess the accumulation of dry matter of the aerial segment and the productivity of stems of sugarcane crops within the first cycle, at different levels of water replacement (WR) with and without nitrogen fertilization, through a subsurface drip irrigation system. The assay was conducted in the experimental area of the Federal Institut Goiano, Campus Rio Verde, GO, Brazil, in a dystroferric Rhodic Hapludox soil, cerrado phase (savannah), and comprised experimental splits of three furrows with an 8-meter long double row. Experimental design consisted of randomized blocks in a 5 × 2 factorial array, with four replications. Evaluated factors comprised five levels of WR (100%, 75%, 50%, 25% and 0% of field capacity), with and without the application of nitrogen (0 and 100 kg·ha-1 urea). Harvest occurred in May 2013 and stem productivity (SP), productivity of pointers (PP), productivity of straw (PS), harvest index (HI), dry matter of stem (DMS), dry matter of pointers (DMP), the relationship between dry matter of pointer and dry matter of stem (DMP/DMS) and total dry matter of the aerial segment (TDM) were determined. The variables SP, PP, DMS and DMP had a linear growth in proportion to WR increase, whereas HI and DMP/DMS adjusted to a quadratic model. Nitrogen fertilization affected positively the variables SP, HI, DMS and DMP/DMS and occurred interaction to TDM;also increasing the productivity stem and the harvest index.展开更多
The effects of long-day photoperiod on growth,photo synthetic fluorescence,carbon and nitrogen metabolism,and yield of Dendrocalamopsis oldhami and the compensation effects of fertilization were investigated.A complet...The effects of long-day photoperiod on growth,photo synthetic fluorescence,carbon and nitrogen metabolism,and yield of Dendrocalamopsis oldhami and the compensation effects of fertilization were investigated.A completely randomized design was used with two light factors(bamboo culms cultivated in solar greenhouse under long-day[Ls]and short-day[Ln]treatments);two organic nitrogen fertilizer levels(application of organic fertilizer[OF]and no organic fertilizer[NF]);and three nitrogen fertilizer levels(Low[N0],medium[N1]and high nitrogen[N2]).Leaf chlorophyll and fluorescence parameters(φPo,PIABS,and ETo/CSm)decreased and DIo/CSmincreased in Ls compared to Ln.Indole acetic acid(IAA)and gibberellic acid(GA3)levels decreased,whereas abscisic acid(ABA)increased.Leaf area decreased and leaf dry mass increased.The contents of carbon and nitrogen metabolism-related enzymes(nitrate reductase,glutamine synthetase,amylase,and sucrose synthase)and products(total nitrogen,organic carbon,soluble sugar,and starch)increased.Single bamboo shoot weight and diameter at breast height decreased,whereas shoot quantity and total yield increased.Fertilizer application significantly affected physiological growth and yield in the two light treatments,thus promoting carbon and nitrogen metabolism.TheφPo,PIABS,IAA,and GA3contents increased slightly,whereas ABA levels decreased.Shoot quantity,individual weight,and total yield improved.IA A,soluble sugar,and total yield to organic manure and light were lower than those of nitrogen levels(FN>FL,FO).Other indicators showed lower responses to different fertilization treatments than the light factor(FL>FN,FO).The ability of D.oldhami to alter its morphological and physiobiochemical traits and yield in response to variations in light applications may translate into high phenotypic plasticity.Fertilization significantly improved photoplasticity of D.oldhami.Under Ls,D.oldhami had high metabolic rates.was easily inhibited by light,and showed accelerated leaf senescence,and shoot quantity and total output increased.However,the quality of individual shoots decreased.Different fertilization treatments affected D.oldhami differently under the two light intensities.Ls sensitivity to nitrogen was higher.Fertilization could delay leaf dormancy and senescence under Ls treatment.Organic fertilizer addition could improve yield more effectively,with OFN1being the optimal fertilization level.展开更多
Low soil fertility is a major constraint to maize production in the small holder farms of Meru South District. This is mainly attributed to the mining of nutrients due to cropping without external addition of adequate...Low soil fertility is a major constraint to maize production in the small holder farms of Meru South District. This is mainly attributed to the mining of nutrients due to cropping without external addition of adequate nutrients. Mineral fertilizers are expensive hence un affordable by most small holder farmers. The use of organic matter to increase and maintain soil fertility is being considered as a solution to help the low-income small holder farmers. A study was conducted in Mucwa location, Meru South District to determine the levels of complementarity between organic and mineral N amendments on maize yields and their influence on soil chemical properties. The experiment was set in a complete randomized block design (CRBD) with three replicates. The treatments were compared with the response obtained from control. The general soil fertility parameters changed slightly with Calcium, Magnesium and Potassium increasing in all treatments. The organic Carbon and total Nitrogen was higher in treatments that received sole organic N sources than in sole mineral N and a combination of organic and mineral N sources. The highest maize grain yield of 4.8 t·ha-1 and 4.2 t·ha-1 were realized from sole application of calliandra during the 2005 Short rains and 2006 Long rains cropping seasons. Generally the maize grain yields were lower in treatments with mineral N alone compared to the treatments with organics. Treatments with sole calliandra and sole tithonia had the highest benefit cost ratio (BCR), followed closely by manure treatment. More so, integration of organic and mineral N sources resulted to higher net benefit and BCR than the application of the recommended rate of mineral fertilizers. Results obtained indicated that the use of either organic or combined organic/mineral N soil amendment appear to be superior to using mineral amendment sources alone.展开更多
基金supported by The Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2020-KF-001)the Grand S&T Project of Qinghai Province(2019-NK-A11)the Key R&D Project of Qinghai Province(2018-NK-128).
文摘Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels.N fertilizer rates had 0,50,100,150,200,and 250 g N/plant.Organic fertilizer rates had 0,2,4,6,8,and 10 kg organic fertilizer/plant.The experimental treatments included 6 combinations of N0M10,N50M8,N100M6,N150M4,N200M2,and control was N250M0.The results showed that in the high-fertility soils,combinations of N150M4,N100M6 and N50M8 treatments were increased in yields,fruit shape index,flavonoid content,total phenol content,mineral nutrient content,and antioxidant activity of wolfberry fruits.Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm.In the soil with less fertility,fruit yield,amino acid contents,flavonoids,total phenols,mineral nutrients and antioxidant activity of fruits were increased by the N200M2,N150M4 and N100M6 treatments and soil fertility was improved as well.Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control.Therefore,in the Qinghai-Tibet Plateau,combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching.In conclusion,50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation.
基金supported by the National Natural Science Foundation of China (41671301)the National Key Research and Development Program of China (2016YFD0300901)the Central Public-interest Scientific Institution Basal Research Fund, China (GY2022-13-5, G2022-02-2, G2022-02-3 and G2022-02-10)
文摘Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.
基金Supported by Key R&D Program of the Ministry of Science and Technology of China(2017YFC0505102-4)。
文摘[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.
基金Supported by National Natural Science Foundation of China(41371259)Hubei Natural Science Foundation(2014CFB545)~~
文摘The soybean, cotton, maize and sorghum were planted in pot under low nitrogen, high nitrogen treatments, the soil available nitrogen constitution and con- version and utilization of nitrogen fertilizer were determined, so as to provide techni- cal guidance for reasonable use and improving use efficiency of nitrogen fertilizer for different types of crops. Compared with the control with nitrogen but unplanted crop, growing soybean, cotton, maize, sorghum significantly decreased the soil available N contents by 53. 48%, 51.54%, 33.10%, 55.03%,and influenced the constitution of soil available N. Thereinto, growing soybean, cotton, maize and sorghum significantly decreased soil inorganic N contents by 85.41%, 83.09%, 70.89% and 83.35%,but increased soil hydrolysable organic N contents by 1.41, 1.53, 2.11 and 1.28 times, respectively; growing soybean, cotton, maize and sorghum significantly decreased the rate of soil inorganic N to available N by 68.61%, 65.09%, 56.47% and 63.00%, but increased the rate of soil hydrolysable organic N to available N by 4.18, 4.21, 3.66 and 4.08 times, respectively. Compared with the control, growing soybean, cotton, maize and sorghum significantly increased the transform rate of ammonium nitrogen fertilizer by 93.66%, 38.19%, 32.58% and 38.31% respectively, and growing soybean treatment had the highest increasing range; the nitrification rates of ammo- nium nitrogen fertilizer of growing soybean, cotton, maize and sorghum treatments were negative values, and growing soybean treatment had the highest decreasing amplitude. The ammonium nitrogen fertilizer use efficiency of growing soybean, cot- ton, maize and sorghum treatments were 52.01%, 28.31%, 24.16% and 28.40% re- spectively and growing soybean treatment had the highest value. In conclusion, growing crops suppressed the soil nitrification and accelerated the development of soil hydrolysable organic nitrogen by the utilization of soil available nitrogen and the alteration of soil environment, and hence impacted the constitution of soil available nitrogen and the transform and use of ammonium nitrogen applied in soil. Legumi- nous crops had stronger ability of suppressing nitrification, making use of ammonium compared with non-Leguminous crops.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390080 and 30370287).
文摘In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.
基金funded by the Program for New Century Excellent Talents in University (NCET-13-0487)the Program from Northwest A&F University (2014YQ007)+4 种基金the National Basic Research Program of China (2009CB118604)the National Science and Technology Support for Major Projects of China (2011BAD31B01)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-JC408)Science and Technology Generalized Program for the Overall Development of Agriculture in Ningxia (NTKJ-2014-01)the Scientific Research Program from Education Department of Shaanxi Province (11JK0650).
文摘Changes in the distribution of soil aggregate sizes and concentrations of aggregate-associated organic carbon (OC) and nitrogen (N) in response to the fertilization of grasslands are not well understood. Understanding these changes is essential to the sustainable development of artificial grasslands. For understanding these changes, we collected soil samples at 0-20 and 20-40 cm depths from a semi-arid artificial alfalfa grassland after 27 years of applications of phosphorus (P) and nitrogen+phosphorus+manure (NPM) fertilizers on the Loess Pla- teau of China. The distribution of aggregate sizes and the concentrations and stocks of OC and N in total soils were determined. The results showed that NPM treatment significantly increased the proportions of 〉2.0 mm and 2.0-0.25 mm size fractions, the mean geometric diameter (MGD) and the mean weight diameter (MWD) in the 0-20 cm layer. Phosphorous fertilizer significantly increased the proportion of 〉2.0 mm size fractions, the MGD and the MWD in the 0-20 cm layer. Long-term application of fertilization (P and NPM) resulted in the accumulation of OC and N in soil aggregates. The largest changes in aggregate-associated OC and N in the 0-20 cm layer were found at the NPM treatment, whereas the largest changes in the 20-40 cm layer were found at the P treatment. The results suggest that long-term fertilization in the grassland leads to the accumulation of OC and N in the coarse size fractions and the redistribution of OC and N from fine size fractions to coarse size fractions.
基金The study was supported by the National Natural Sci—ence Foundation of China(30571116).
文摘Soil samples collected from a 25-year long-term fertilizer experiment carried out on the Earth-cumulic-Orthic Anthrosols in semi-humid farmland ecological system, were used to study the distribution of soil organic matters, total nitrogen, nitrate nitrogen, and ammoniate nitrogen in different grades of soil macro-aggregates in order to study the effects of long-term application of organic manures in combination with chemical fertilizers. It is showed that the percentage of mass of the soil macro-aggregates with long-term application of fertilizers with sizes of 5-2 mm is increased compared with that of the samples with no fertilizer. It is easier to form lager size soil macro-aggregates by the long-term application of organic manures in combination with chemical fertilizers. The contents of organic matters, total nitrogen and nitrate nitrogen are all higher after treatments with different combinations of fertilizers, while there is a little effect on the contents of ammoniate nitrogen. The contents of organic matters, total nitrogen in the grades of soil macro-aggregates from the plough layers of the treated farmland exhibited significant difference. Moreover, the contents of organic matters and total nitrogen in the soil macro-aggregates with the size of 1-0.25 mm is the highest in all treated soil samples. The contents of nitrate nitrogen in soil macro-aggregates increased with the increasing of soil macro-aggregate size except those applied with chemical fertilizer and lower amount of corn stover. The results of correlation analysis revealed that there exists a significantly positive correlation between the percentage of mass of soil macro-aggregates with the size of 5-2 mm and the contents of organic matters, total nitrogen and nitrate nitrogen in the soil samples. However, the correlation between the percentage of mass of soil macro-aggregates with the size of 1-0.25 rnm and the contents of total nitrogen and nitrate nitrogen is significantly negative.The study showed that the highest contributing rates of macro-aggregates fractions to soil fertility is from the soil macro-aggregates fraction with the size of 1-0.25 mm in most of the cases.
基金Supported by The General Program of National Natural Science Foundation of China(312771673)Programs for Science and Technology Development of Tobacco Monopoly Bureau in Guizhou Province(20121126)~~
文摘In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.
基金supported by Japanese Government (MEXT) Scholarship Program 2016–2019, Japan
文摘We investigated the effects of integrated organic and inorganic fertilizers on the growth and yield of indica rice variety Manawthukha and japonica rice variety Genkitsukushi.In a split-plot design,the two rice varieties were assigned as main plot factors,and the integrated treatments were the subplot factors,including no-N fertilizer(N0),50%chemical fertilizer(CF)(CF50),100%CF(CF100),50%CF+50%poultry manure(PM)(CF50PM50),50%CF+50%cow manure(CM)(CF50CM50),and 50%CF+50%compost(CP)(CF50CP50).CF100 was equivalent to N at 85 kg/hm2.Manure was applied based on the estimated mineralizable nitrogen(EMN)level,which is dependent on total N(%)of each manure type.Manawthukha rice plants were taller with higher tiller number and dry matter content.However,higher soil-plant analysis development(SPAD)values were measured in Genkitsukushi throughout the crop growth period,resulting in higher seed-setting rate(%)and greater yield.At the same N level,CF50PM50 application in both rice varieties resulted in higher SPAD values,plant height and tiller number than CF100.CF50PM50 containing total N more than 4%supplied synchronized N for the demands of the rice plants,resulting in maximum dry matter,yield and yield components.CF50CM50 and CF50CP50 treatments containing total N less than 4%resulted in lower yields which were similar to CF100.These results indicated that integrating organic and inorganic fertilizers enhanced growth parameters and yields of Manawthukha and Genkitsukushi,while reducing the dose of chemical fertilizer.
基金the National Natural Science Foundation of China (No. 20337010).
文摘Nitrogen (N) leaching in vegetable fields from December 2002 to May 2003 with equal dressings of total N for asequential rotation of Chinese flat cabbage (Brassica chinensis L. var. rosularis) and lettuce (Lactuca sativa L.) in asuburban major vegetable production base of Shanghai were examined using the lysimeter method to provide a scientificbasis for rational utilization of nitrogen fertilizers so as to prevent nitrogen pollution of water resources. Results showedthat leached N consisted mainly of nitrate N, which accounted for up to more than 90% of the total N loss and couldcontribute to groundwater pollution. Data also showed that by partly substituting chemical N (30%) in a basal dressingwith equivalent N of refined organic fertilizer in the Chinese flat cabbage field, 64.5% of the leached nitrate N was reduced,while in the lettuce (Lactuca sativa L.) field, substituting 1/2 of the chemical N in a basal dressing and 1/3 of the chemicalN in a top dressing with equivalent N of refined organic fertilizers reduced 46.6% of the leached nitrate N. In the two-year sequential rotation system of Chinese flat cabbage and lettuce, nitrate-N leaching in the treatment with the highestamount of chemical fertilizer was up to 46.55 kg ha-1, while treatment plots with the highest amount of organic fertilizerhad only 17.58 kg ha-1. Thus, partly substituting refined organic fertilizer for chemical nitrogen in the first two seasonshas a great advantage of reducing nitrate-N leaching.
基金supported by the grants from the National Basic Research Program(Grant No.2009CB118603)the National Science Foundation of China(NSFC-IRRI Joint Research Project,Grant No.31061140457)+3 种基金the Natural Science Foundation of China(Grant Nos.31071360 and 31271641)the Basic Scientific Research Special Operation Cost of the Central Research Institutions(Grant Nos.201103003 and 201203079)the National Key Technology Support Program of China(Grant Nos.2011BAD16B14 and 2012BAD04B08)the Jiangsu Advantages of Key Construction Projects and Research Innovation Project by Graduate Student(Grant No.CXZZ13_0902)
文摘A field experiment was conducted at the farm of Yangzhou University, Yangzhou, China, to study the effects of organic fertilizers made from maize straw on rice grain yield and the emission of greenhouse gases. Four organic fertilizer treatments were as follows: maize straw (MS), compost made from maize straw (MC), methane-generating maize residue (MR), and black carbon made from maize straw (BC). These organic fertilizers were applied separately to paddy fields before rice transplanting. No organic fertilizer was applied to the control (CK). The effects of each organic fertilizer on rice grain yield and emission of greenhouse gases were investigated under two conditions, namely, no nitrogen (N) application (ON) and site-specific N management (SSNM). Rice grain yields were significantly higher in the MS, MC and MR treatments than those in CK under either ON or SSNM. The MS treatment resulted in the highest grain yield and agronomic N use efficiency. However, no significant difference was observed for these parameters between the BC treatment and CK. The changes in the emissions of methane (CH4) carbon dioxide (CO2), or nitrous oxide (N20) from the fields were similar among all organic fertilizer treatments during the entire rice growing season. The application of each organic fertilizer significantly increased the emission of each greenhouse gas (except N20 emission in the BC treatment) and global warming potential (GWP). Emissions of all the greenhouse gases and GWP increased under the same organic fertilizer treatment in the presence of N fertilizer, whereas GWP per unit grain yield decreased. The results indicate that the application of organic fertilizer (MS, MC or MR) could increase grain yield, but also could enhance the emissions of greenhouse gases from paddy fields. High grain yield and environmental efficiency could be achieved by applying SSNM with MR.
文摘Dry matter production and productivity of stem currently are being widely studied in sugarcane, reinforcing the study in question, which aims to assess the accumulation of dry matter of the aerial segment and the productivity of stems of sugarcane crops within the first cycle, at different levels of water replacement (WR) with and without nitrogen fertilization, through a subsurface drip irrigation system. The assay was conducted in the experimental area of the Federal Institut Goiano, Campus Rio Verde, GO, Brazil, in a dystroferric Rhodic Hapludox soil, cerrado phase (savannah), and comprised experimental splits of three furrows with an 8-meter long double row. Experimental design consisted of randomized blocks in a 5 × 2 factorial array, with four replications. Evaluated factors comprised five levels of WR (100%, 75%, 50%, 25% and 0% of field capacity), with and without the application of nitrogen (0 and 100 kg·ha-1 urea). Harvest occurred in May 2013 and stem productivity (SP), productivity of pointers (PP), productivity of straw (PS), harvest index (HI), dry matter of stem (DMS), dry matter of pointers (DMP), the relationship between dry matter of pointer and dry matter of stem (DMP/DMS) and total dry matter of the aerial segment (TDM) were determined. The variables SP, PP, DMS and DMP had a linear growth in proportion to WR increase, whereas HI and DMP/DMS adjusted to a quadratic model. Nitrogen fertilization affected positively the variables SP, HI, DMS and DMP/DMS and occurred interaction to TDM;also increasing the productivity stem and the harvest index.
基金Basic Scientific Research Funding of the International Center for Bamboo and Rattan(1632020023)。
文摘The effects of long-day photoperiod on growth,photo synthetic fluorescence,carbon and nitrogen metabolism,and yield of Dendrocalamopsis oldhami and the compensation effects of fertilization were investigated.A completely randomized design was used with two light factors(bamboo culms cultivated in solar greenhouse under long-day[Ls]and short-day[Ln]treatments);two organic nitrogen fertilizer levels(application of organic fertilizer[OF]and no organic fertilizer[NF]);and three nitrogen fertilizer levels(Low[N0],medium[N1]and high nitrogen[N2]).Leaf chlorophyll and fluorescence parameters(φPo,PIABS,and ETo/CSm)decreased and DIo/CSmincreased in Ls compared to Ln.Indole acetic acid(IAA)and gibberellic acid(GA3)levels decreased,whereas abscisic acid(ABA)increased.Leaf area decreased and leaf dry mass increased.The contents of carbon and nitrogen metabolism-related enzymes(nitrate reductase,glutamine synthetase,amylase,and sucrose synthase)and products(total nitrogen,organic carbon,soluble sugar,and starch)increased.Single bamboo shoot weight and diameter at breast height decreased,whereas shoot quantity and total yield increased.Fertilizer application significantly affected physiological growth and yield in the two light treatments,thus promoting carbon and nitrogen metabolism.TheφPo,PIABS,IAA,and GA3contents increased slightly,whereas ABA levels decreased.Shoot quantity,individual weight,and total yield improved.IA A,soluble sugar,and total yield to organic manure and light were lower than those of nitrogen levels(FN>FL,FO).Other indicators showed lower responses to different fertilization treatments than the light factor(FL>FN,FO).The ability of D.oldhami to alter its morphological and physiobiochemical traits and yield in response to variations in light applications may translate into high phenotypic plasticity.Fertilization significantly improved photoplasticity of D.oldhami.Under Ls,D.oldhami had high metabolic rates.was easily inhibited by light,and showed accelerated leaf senescence,and shoot quantity and total output increased.However,the quality of individual shoots decreased.Different fertilization treatments affected D.oldhami differently under the two light intensities.Ls sensitivity to nitrogen was higher.Fertilization could delay leaf dormancy and senescence under Ls treatment.Organic fertilizer addition could improve yield more effectively,with OFN1being the optimal fertilization level.
文摘Low soil fertility is a major constraint to maize production in the small holder farms of Meru South District. This is mainly attributed to the mining of nutrients due to cropping without external addition of adequate nutrients. Mineral fertilizers are expensive hence un affordable by most small holder farmers. The use of organic matter to increase and maintain soil fertility is being considered as a solution to help the low-income small holder farmers. A study was conducted in Mucwa location, Meru South District to determine the levels of complementarity between organic and mineral N amendments on maize yields and their influence on soil chemical properties. The experiment was set in a complete randomized block design (CRBD) with three replicates. The treatments were compared with the response obtained from control. The general soil fertility parameters changed slightly with Calcium, Magnesium and Potassium increasing in all treatments. The organic Carbon and total Nitrogen was higher in treatments that received sole organic N sources than in sole mineral N and a combination of organic and mineral N sources. The highest maize grain yield of 4.8 t·ha-1 and 4.2 t·ha-1 were realized from sole application of calliandra during the 2005 Short rains and 2006 Long rains cropping seasons. Generally the maize grain yields were lower in treatments with mineral N alone compared to the treatments with organics. Treatments with sole calliandra and sole tithonia had the highest benefit cost ratio (BCR), followed closely by manure treatment. More so, integration of organic and mineral N sources resulted to higher net benefit and BCR than the application of the recommended rate of mineral fertilizers. Results obtained indicated that the use of either organic or combined organic/mineral N soil amendment appear to be superior to using mineral amendment sources alone.