期刊文献+
共找到1,159篇文章
< 1 2 58 >
每页显示 20 50 100
H-and J-aggregation of conjugated small molecules in organic solar cells
1
作者 Qiaoqiao Zhao Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期174-192,I0005,共20页
As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of con... As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance. 展开更多
关键词 H-AGGREGATION J-AGGREGATION organic solar cells Small molecules EFFICIENCY STABILITY
下载PDF
Semitransparent organic photovoltaics enabled by transparent p-type inorganic semiconductor and near-infrared acceptor
2
作者 Xue Yan Jiayu Wang +17 位作者 Wei He Top Archie Dela Peña Can Zhu Hailin Yu Yingyue Hu Cenqi Yan Shengqiang Ren Xingyu Chen Zhe Wang Jiaying Wu Mingjie Li Jianlong Xia Lei Meng Shirong Lu Dewei Zhao Mikhail Artemyev Yongfang Li Pei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期351-358,共8页
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi... Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%. 展开更多
关键词 Copper(I)thiocyanate Inorganic semiconductor SEMITRANSPARENT organic photovoltaics Charge dissociation
下载PDF
Photodetectors based on small-molecule organic semiconductor crystals 被引量:2
3
作者 Jing Pan Wei Deng +3 位作者 Xiuzhen Xu Tianhao Jiang Xiujuan Zhang Jiansheng Jie 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第3期26-39,共14页
Small-molecule organic semiconductor crystals(SMOSCs) combine broadband light absorption(ultraviolet–visible–near infrared) with long exciton diffusion length and high charge carrier mobility. Therefore, they are pr... Small-molecule organic semiconductor crystals(SMOSCs) combine broadband light absorption(ultraviolet–visible–near infrared) with long exciton diffusion length and high charge carrier mobility. Therefore, they are promising candidates for realizing high-performance photodetectors. Here, after a brief resume of photodetector performance parameters and operation mechanisms, we review the recent advancements in application of SMOSCs as photodetectors, including photoconductors, phototransistors, and photodiodes. More importantly, the SMOSC-based photodetectors are further categorized according to their detection regions that cover a wide range from ultraviolet to near infrared. Finally, challenges and outlooks of SMOSC-based photodetectors are provided. 展开更多
关键词 small molecule organic semiconductor CRYSTALS PHOTODETECTORS
下载PDF
Implications of electrode modifications in aqueous organic redox flow batteries
4
作者 Zahid Manzoor Bhat Mohammad Furquan +3 位作者 Muhammad Aurang Zeb Gul Sial Umair Alam Atif Saeed Alzahrani Mohammad Qamar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期499-510,I0011,共13页
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t... Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory. 展开更多
关键词 Redox flow batteries Electrode modification organic redox molecules Outer sphere and inner sphere
下载PDF
Pinning energies of organic semiconductors in high-efficiency organic solar cells 被引量:1
5
作者 Xian’e Li Qilun Zhang +1 位作者 Xianjie Liu Mats Fahlman 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期52-61,共10页
With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning ener... With the emergence of new materials for high-efficiency organic solar cells(OSCs),understanding and finetuning the interface energetics become increasingly important.Precise determination of the so-called pinning energies,one of the critical characteristics of the material to predict the energy level alignment(ELA)at either electrode/organic or organic/organic interfaces,are urgently needed for the new materials.Here,pinning energies of a wide variety of newly developed donors and nonfullerene acceptors(NFAs)are measured through ultraviolet photoelectron spectroscopy.The positive pinning energies of the studied donors and the negative pinning energies of NFAs are in the same energy range of 4.3−4.6 eV,which follows the design rules developed for fullerene-based OSCs.The ELA for metal/organic and inorganic/organic interfaces follows the predicted behavior for all of the materials studied.For organic-organic heterojunctions where both the donor and the NFA feature strong intramolecular charge transfer,the pinning energies often underestimate the experimentally obtained interface vacuum level shift,which has consequences for OSC device performance. 展开更多
关键词 organic semiconductors organic solar cells pinning energies integer charge transfer interface dipoles
下载PDF
Kinetic and thermodynamic synergy of organic small molecular additives enables constructed stable zinc anode
6
作者 Yang Gao Mingshan Wang +10 位作者 Hao Wang Xinpeng Li Yuanwei Chu Zhicheng Tang Yuanlong Feng Jiaqi Wang Yong Pan Zhiyuan Ma Zhenliang Yang Dan Zhou Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期62-72,共11页
An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipo... An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries. 展开更多
关键词 Zn anode organic small molecule Aqueous zinc-ion battery Zinc formate
下载PDF
Wavelength-tunable organic semiconductor lasers based on elastic distributed feedback gratings
7
作者 Chengfang Liu He Lin +6 位作者 Dongzhou Ji Qun Yu Shuoguo Chen Ziming Guo Qian Luo Xu Liu Wenyong Lai 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期68-75,共8页
Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the di... Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the distributed feedback gratings for fine tuning the lasing wavelength. Notably, elastic lasers based on three typical light-emitting molecules show com-parable lasing threshold values analogous to rigid devices and a continuous wavelength tunability of about 10 nm by mechanic-al stretching. In addition, the stretchability provides a simple solution for dynamically tuning the lasing wavelength in a spec-tral range that is challenging to achieve for inorganic counterparts. Our work has provided a simple and efficient method of fab-ricating tunable organic lasers that depend on stretchable distributed feedback gratings, demonstrating a significant step in the advancement of flexible organic optoelectronic devices. 展开更多
关键词 stretchable electronics organic semiconductor lasers elastic lasers distributed feedback(DFB)gratings wavelength tunability
下载PDF
14.46% Efficiency small molecule organic photovoltaics enabled by the well trade-off between phase separation and photon harvesting 被引量:2
8
作者 Chunyu Xu Haiyan Chen +6 位作者 Zijin Zhao Jinhua Gao Xiaoling Ma Shirong Lu Xiaoli Zhang Zeyun Xiao Fujun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期610-617,I0015,共9页
Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 h... Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell. 展开更多
关键词 Small molecule organic photovoltaics Ternary strategy Non-fullerene acceptor
下载PDF
Syntheses and Characterizations of Two New Organic-inorganic Hybrids Based on Heteropolymolybdates and Piperidine Molecules 被引量:3
9
作者 周端文 张宏 杨振芳 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第3期312-320,共9页
Two new organic-inorganic compounds [(CH2)5NH2]3[PMo12O40]·3[(CH2)NH] 1 and [(CH2)5NH2]6[P2Mo18O62]·5H2O 2 have been synthesized using conventional and hydrothermal methods, respectively, and character... Two new organic-inorganic compounds [(CH2)5NH2]3[PMo12O40]·3[(CH2)NH] 1 and [(CH2)5NH2]6[P2Mo18O62]·5H2O 2 have been synthesized using conventional and hydrothermal methods, respectively, and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. X-ray analyses show that in these compounds heteropolymolybdates [PMo12O40]^3- and [P2Mo18O62]^6- are reserved their Keggin or Dawson structures and linked to piperidine through electrostatic and hydrogen-bonding interactions. 展开更多
关键词 organic-inorganic hybrids heteropolymolybdates piperidine molecules
下载PDF
Preparation of Fluoroalkyl End-Capped Oligomer/Cyclodextrin Polymer Composites: Development of Fluorinated Composite Material Having a Higher Adsorption Ability toward Organic Molecules 被引量:1
10
作者 Jun-Ichi Suzuki Yutaro Takegahara +2 位作者 Yuri Oikawa Yuta Aomi Hideo Sawada 《Journal of Encapsulation and Adsorption Sciences》 2018年第2期117-138,共22页
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(CH2CHSi(OMe)3)n-RF;RF = CF(CF3)OCF7, n = 2, 3;RF-(VM)n-RF] was applied to the preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomer/α-, β-, ... Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(CH2CHSi(OMe)3)n-RF;RF = CF(CF3)OCF7, n = 2, 3;RF-(VM)n-RF] was applied to the preparation of fluoroalkyl end-capped vinyltrimethoxysilane oligomer/α-, β-, γ-cyclodextrin polymers (α-, β-, γ-CDPs) composites [RF-(VM-SiO2)n-RF/α-, β-, γ-CDPs] by the sol-gel reaction of the corresponding oligomer in the presence of the α-, β-, γ-CDPs under alkaline conditions. The RF-(VM-SiO2)n-RF/α-, β-, γ-CDPs composites thus obtained were found to give a good dispersibility toward the traditional organic media except for water, and were applied to the surface modification of glass to provide a sueperoleophilic/superhydrophobic characteristic on the modified surface, although the corresponding RF-(VM-SiO2)n-RF nanocomposites can give a usual oleophobic/superhydrophobic property on the surface. These composites powders were also found to be applicable to the packing material for the column chromatography to separate the mixture of oil/water and the water in oil (W/O) emulsions. More interestingly, these composite powders were found to have a higher adsorption ability toward not only low-molecular weight aromatic compounds such as bisphenol A and bisphenol AF but also volatile organic compounds, compared to that of the pristine α-, β-, γ-CDPs. 展开更多
关键词 FLUORINATED Oligomeric Composite CYCLODEXTRIN Polymer Surface Modification Superoleophilic Superhydrophobic Property Separation of Oil and Water organic molecule VOC ADSORPTION ABILITY
下载PDF
DISCOVERY OF ORGANIC MOLECULES IN DEEP-SEA IRON COSMIC DUST
11
作者 彭汉昌 徐培苍 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1995年第1期9-12,共4页
A great quartity of cosmic dust(spherules) was found in deep-sea sediments during May to July,1983manganese nodule investigations by the R/V“XIANGYANGHONG 16”in the area 7°-11°N,167°-178°Win th... A great quartity of cosmic dust(spherules) was found in deep-sea sediments during May to July,1983manganese nodule investigations by the R/V“XIANGYANGHONG 16”in the area 7°-11°N,167°-178°Win the Pacific.Comprehensive study of the cosmic dust and determination with Laser Raman MolecularMicroprobe(LRMM) of the molecules in it showed that besides Fe-Fe,Fe<sup>3+</sup>-O,Fe-Ni,Al-O,Fe-Obr-Si and Si-Onb,it also contained the organic molecules C-H-O and C-H-S-O,various no fixed form molecules of C,CH<sub>2</sub>,CH<sub>3</sub> and volatile molecules CO<sub>2</sub>,H<sub>2</sub>O,OH<sup>-</sup> and H<sub>2</sub>S,etc…The study result has very important applications for exploring the origin of interplanetary dust parti-cles and life material. 展开更多
关键词 IRON COSMIC DUST organic molecule Laser Raman molecular MICROPROBE life material
下载PDF
Photovoltaic molecules based on vinylene-bridged oligothiophene applied for bulk-heterojunction organic solar cells
12
作者 Jing Zhang Pan Yin +4 位作者 Linjun Xu Ping Shen Mingfu Ye Ningyi Yuan Jianning Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期426-431,共6页
We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinyl... We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2. 展开更多
关键词 organic solar cells Photovoltaic organic molecules Vinylene-bridged oligothiophene
下载PDF
Nonadiabatic dynamics of electron injection into organic molecules
13
作者 朱丽萍 邱宇 童国平 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期470-477,共8页
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method... We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value work-function electrode. For polymer/electrode structures This means that the Schottky barrier is pinned for a small we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontneous electron transfer from electrodes to polymers. 展开更多
关键词 nonadiabatic dynamics electron injection organic molecule
下载PDF
Interaction Energy Prediction of Organic Molecules using Deep Tensor Neural Network
14
作者 Yuan Qi Hong Ren +6 位作者 Hong Li Ding-lin Zhang Hong-qiang Cui Jun-ben Weng Guo-hui Li Gui-yan Wang Yan Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第1期112-124,I0012,共14页
The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction ... The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction energy based on quantum mechanics can not be merged into molecular dynamic simulation for a long time scale.A deep learning framework,deep tensor neural network,is applied to predict the interaction energy of three organic related systems within the quantum mechanics level of accuracy.The geometric structure and atomic types of molecular conformation,as the data descriptors,are applied as the network inputs to predict the interaction energy in the system.The neural network is trained with the hierarchically generated conformations data set.The complex tensor hidden layers are simplified and trained in the optimization process.The predicted results of different molecular sys tems indica te that deep t ensor neural net work is capable to predic t the interaction energy with 1 kcal/mol of the mean absolute error in a relatively short time.The prediction highly improves the efficiency of interaction energy calculation.The whole proposed framework provides new insights to introducing deep learning technology into the interaction energy calculation. 展开更多
关键词 Deep tensor neural net work Interac tion energy organic molecules
下载PDF
Nonadiabatic dynamics of electron injection into organic molecules
15
作者 朱丽萍 邱宇 童国平 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期474-481,共8页
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method... We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers. 展开更多
关键词 nonadiabatic dynamics electron injection organic molecule
全文增补中
Hybrid Field-Effect Transistors and Photodetectors Based on Organic Semiconductor and CsPbI_3 Perovskite Nanorods Bilayer Structure 被引量:4
16
作者 Yantao Chen Xiaohan Wu +3 位作者 Yingli Chu Jiachen Zhou Bilei Zhou Jia Huang 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期24-32,共9页
The outstanding performances of nanostructured allinorganic CsPbX_3(X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coeffi... The outstanding performances of nanostructured allinorganic CsPbX_3(X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coefficient, and long carrier lifetime, which are desirable for photodetectors. However, the photosensing performances of the CsPbI_3 nanomaterials are limited by their low charge-transport efficiency. In this study, a phototransistor with a bilayer structure of an organic semiconductor layer of 2,7-dioctyl [1] benzothieno[3,2-b] [1] benzothiophene and CsPbI_3 nanorod layer was fabricated. The high-quality CsPbI_3 nanorod layer obtained using a simple dip-coating method provided decent transistor performance of the hybrid transistor device.The perovskite layer efficiently absorbs light, while the organicsemiconductor layer acts as a transport channel for injected photogenerated carriers and provides gate modulation. The hybrid phototransistor exhibits high performance owing to the synergistic function of the photogating effect and field effect in the transistor,with a photoresponsivity as high as 4300 A W^(-1), ultra-high photosensitivity of 2.2 9 106, and excellent stability over 1 month.This study provides a strategy to combine the advantages of perovskite nanorods and organic semiconductors in fabrication of high-performance photodetectors. 展开更多
关键词 PEROVSKITE PHOTOTRANSISTOR Nanorod organic semiconductor Photogating effect
下载PDF
2D organic semiconductors, the future of green nanotechnology 被引量:3
17
作者 Guru Prakash Neupane Wendi Ma +3 位作者 Tanju Yildirim Yilin Tang Linglong Zhang Yuerui Lu 《Nano Materials Science》 CAS 2019年第4期246-259,共14页
The discovery of 2D organic semiconductors of atomically thin structures has attracted great attention due to their emerging optical, electronic, optoelectronic and mechatronic properties. Recent progress in such orga... The discovery of 2D organic semiconductors of atomically thin structures has attracted great attention due to their emerging optical, electronic, optoelectronic and mechatronic properties. Recent progress in such organic nanostructures has opened new opportunities for engineering material properties in many ways, such as, 0D/1D/2D nanoparticles hybridization, strain engineering, atomic doping etc. Moreover, 2D organic nanostructures exhibit a unique feature of bio–functionality and are highly sensitive to bio-analytes. Such peculiar behavior in 2D organics can be utilized to design highly-efficient bio-sensors. Also, a bio-molecular integrated electronic/optoelectronic device with enhanced performance can be attained. Furthermore, the bio-degradable, biocompatible, biometabolizable, non-toxic behaviour and natural origin of organic nanomaterials can address the current ecological concerns of increasing inorganic material based electronic waste. This review highlights the benefits of 2D organic semiconductors. Considering the importance of strategic techniques for growing thin 2D organic layers,this review summarizes progress towards this direction. The possible challenges for long-time stability and future research directions in 2D organic nano electronics/optoelectronics are also discussed. We believe that this review article provides immense research interests in organic 2D nanotechnology for exploiting green technologies in the future. 展开更多
关键词 2D organic semiconductor Green nanotechnology OTFTs OLEDS Photo-diodes organic solar cell Optical wave guide
下载PDF
Alternating current characterization of nano-Pt(Ⅱ)octaethylporphyrin(PtOEP) thin film as a new organic semiconductor 被引量:1
18
作者 M Dongol M M El-Nahass +2 位作者 A El-Denglawey A A Abuelwafa T Soga 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期426-432,共7页
Alternating current(AC) conductivity and dielectric properties of thermally evaporated Au/Pt OEP/Au thin films are investigated each as a function of temperature(303 K–473 K) and frequency(50 Hz–5 MHz).The fre... Alternating current(AC) conductivity and dielectric properties of thermally evaporated Au/Pt OEP/Au thin films are investigated each as a function of temperature(303 K–473 K) and frequency(50 Hz–5 MHz).The frequency dependence of AC conductivity follows the Jonscher universal dynamic law.The AC-activation energies are determined at different frequencies.It is found that the correlated barrier hopping(CBH) model is the dominant conduction mechanism.The variation of the frequency exponent s with temperature is analyzed in terms of the CBH model.Coulombic barrier height Wm,hopping distance Rω,and the density of localized states N(EF) are valued at different frequencies.Dielectric constant ε1(ω,T) and dielectric loss ε2(ω,T) are discussed in terms of the dielectric polarization process.The dielectric modulus shows the non-Debye relaxation in the material.The extracted relaxation time by using the imaginary part of modulus(M’’)is found to follow the Arrhenius law. 展开更多
关键词 PtOEP thin films AC conductivity dielectric constants organic semiconductors solar cell nano materials
下载PDF
In-situ/operando characterization techniques for organic semiconductors and devices 被引量:1
19
作者 Sai Jiang Qinyong Dai +1 位作者 Jianhang Guo Yun Li 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期13-23,共11页
The increasing demands of multifunctional organic electronics require advanced organic semiconducting materials to be developed and significant improvements to be made to device performance. Thus, it is necessary to g... The increasing demands of multifunctional organic electronics require advanced organic semiconducting materials to be developed and significant improvements to be made to device performance. Thus, it is necessary to gain an in-depth understanding of the film growth process, electronic states, and dynamic structure-property relationship under realistic operation conditions, which can be obtained by in-situ/operando characterization techniques for organic devices. Here, the up-todate developments in the in-situ/operando optical, scanning probe microscopy, and spectroscopy techniques that are employed for studies of film morphological evolution, crystal structures, semiconductor-electrolyte interface properties, and charge carrier dynamics are described and summarized. These advanced technologies leverage the traditional static characterizations into an in-situ and interactive manipulation of organic semiconducting films and devices without sacrificing the resolution, which facilitates the exploration of the intrinsic structure-property relationship of organic materials and the optimization of organic devices for advanced applications. 展开更多
关键词 in-situ/operando characterization organic semiconductors structure-property relationship
下载PDF
Preparation and operation characteristics of organic semiconductor transistor using thin film Al gate and copper phthalocyanine 被引量:1
20
作者 赵洪 王东兴 +3 位作者 梁海峰 桂太龙 殷景华 王喧 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期675-677,共3页
The organic static induction transistors (OSITs) are fabricated by the method of evaporating and plating in a vacuum with copper phthalocyanine (CuPc) dye, and has a five layered structure of Au/CuPc/Al/CuPc/Au. The e... The organic static induction transistors (OSITs) are fabricated by the method of evaporating and plating in a vacuum with copper phthalocyanine (CuPc) dye, and has a five layered structure of Au/CuPc/Al/CuPc/Au. The experiment reveals that OSITs have obtained a low driving voltage, high current density and high switch speed such as I_ DS = 1.2×10 -6 A/mm2, and the degree of 1 000 Hz. The OSITs have excellent operation characteristics of typical static induction transistors. 展开更多
关键词 thin film transistor copper phthaloeyanine organic semiconductor vacuum evaporate
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部