We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's...We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.展开更多
Enantiomorphic identification of chiral molecules is essential in organic chemistry and the pharmaceutical industry,as two enantiomorphic structures can show distinctively different properties.Here,we illustrate the a...Enantiomorphic identification of chiral molecules is essential in organic chemistry and the pharmaceutical industry,as two enantiomorphic structures can show distinctively different properties.Here,we illustrate the absolute structural determination of organic nanocrystals using zone-axis electron diffraction by taking advantage of electron multiple scattering.Two enantiomorphs are distinguished by comparing the reflection intensities of Friedel pairs in the zone-axis electron diffraction pattern,after confirming the absolute indices of reflections by locating relative positions of diffraction spots from two patterns that deviate from a certain angle.We demonstrate the protocol with successful applications in two chiral drug nanocrystals.展开更多
Suspension of micrometer-sized 1,4-bis(4-methylstyryl)benzene(p-MSB) was converted into colloidal nanocrystal solution by irradiation with an femtosecond laser(800 nm, 1 kHz). The prepared nanocrystals were rect...Suspension of micrometer-sized 1,4-bis(4-methylstyryl)benzene(p-MSB) was converted into colloidal nanocrystal solution by irradiation with an femtosecond laser(800 nm, 1 kHz). The prepared nanocrystals were rectangular with ca. 100 nm in size. The same crystal structure as that of bulk crystals was confirmed by X-ray diffraction measurement. UV-Vis spectra and emission spectra of the nanoparticle dispersions in dichloromethane(poor solvent) were examined. The nanocrystal exhibits large quantum yield(89%). The nonlinear optical properties of the nanocrystals were further studied by Z-scan technique with femtosecond laser duration of 120 fs at a wavelength of 800 nm. The results show that the nanocrystals exhibit strong nonlinear absorption.展开更多
As global air pollution becomes increasingly severe,various types of fibrous filters have been developed to improve air filter performance.However,fibrous filters have limitations such as high packing density that gen...As global air pollution becomes increasingly severe,various types of fibrous filters have been developed to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and ultimately deterioration in the filtration efficiency.High-pressure particulate matter precipitators are limited in terms of scope for commercialization because they require high voltage supplies and ozone generators.In this study,we develop fibrous filters with enhanced durability and improved performance using metallized microfibers decorated with metal-organic-framework(MOF)nanocrystals.Not only does the efficiency of the developed filters remain at or above 97%for 0.50-1.5μm PMs but the durability also significantly increases.In addition,using the water purification ability of the MOF,we explore the dye degradation effect of the hybrid microfibers by immersing them into Rhodamine B aqueous solution.In such an experiment the Rhodamine B aqueous solution is completely purified by the presence of the hybrid microfibers under the UV irradiation.展开更多
Organic nanocrystals of 1,3,5-triphenyl-2-pyrazoline (TPP) with a series of sizes were synthesized by reprecipitation method. The luminescence quantum efficiency of TPP nanocrystals increases from 24.2% for the nanocr...Organic nanocrystals of 1,3,5-triphenyl-2-pyrazoline (TPP) with a series of sizes were synthesized by reprecipitation method. The luminescence quantum efficiency of TPP nanocrystals increases from 24.2% for the nanocrystals with an average size of 300 nm to 34.6% for those with an average size of 20 nm. Surface capping by polyvinyl pyrrolidone (PVP) will improve the quantum efficiency of TPP nanocrystals. The size-dependence and capping-induced variation of the luminescence quantum efficiency was elucidated in viewpoint of aggregation quenching and the equilibrium between the TPP monomers and the aggregates in TPP nanocrystals.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 16Z103060007) (PA)。
文摘We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.
基金support of the National Science Foundation of China[grant nos.22222108(Y.M.),12027804(Y.M.)]the Shanghai Science and Technology Plan[grant no.21DZ2260400(Y.M.)]+1 种基金gratefully acknowledge CℏEM,School of Physical Sciences and Technology,Shanghai-Tech University(grant no.EM02161943)for the support of their EM facilities and the Analytical Instrumentation Center(grant no.SPSTAIC10112914),School of Physical Sciences and Technology,ShanghaiTech University.
文摘Enantiomorphic identification of chiral molecules is essential in organic chemistry and the pharmaceutical industry,as two enantiomorphic structures can show distinctively different properties.Here,we illustrate the absolute structural determination of organic nanocrystals using zone-axis electron diffraction by taking advantage of electron multiple scattering.Two enantiomorphs are distinguished by comparing the reflection intensities of Friedel pairs in the zone-axis electron diffraction pattern,after confirming the absolute indices of reflections by locating relative positions of diffraction spots from two patterns that deviate from a certain angle.We demonstrate the protocol with successful applications in two chiral drug nanocrystals.
基金Supported by the National High-Tech Research and Development Program of China(No.2009AA03Z401)the National Natural Science Foundation of China(Nos.61077002,60807030)
文摘Suspension of micrometer-sized 1,4-bis(4-methylstyryl)benzene(p-MSB) was converted into colloidal nanocrystal solution by irradiation with an femtosecond laser(800 nm, 1 kHz). The prepared nanocrystals were rectangular with ca. 100 nm in size. The same crystal structure as that of bulk crystals was confirmed by X-ray diffraction measurement. UV-Vis spectra and emission spectra of the nanoparticle dispersions in dichloromethane(poor solvent) were examined. The nanocrystal exhibits large quantum yield(89%). The nonlinear optical properties of the nanocrystals were further studied by Z-scan technique with femtosecond laser duration of 120 fs at a wavelength of 800 nm. The results show that the nanocrystals exhibit strong nonlinear absorption.
基金supported by The National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2020R1A5A1018153)King Saud University,Riyadh,Saudi Arabia,for funding this work through Researchers Supporting Project number(RSP-2020/30)。
文摘As global air pollution becomes increasingly severe,various types of fibrous filters have been developed to improve air filter performance.However,fibrous filters have limitations such as high packing density that generally causes high-pressure drop and ultimately deterioration in the filtration efficiency.High-pressure particulate matter precipitators are limited in terms of scope for commercialization because they require high voltage supplies and ozone generators.In this study,we develop fibrous filters with enhanced durability and improved performance using metallized microfibers decorated with metal-organic-framework(MOF)nanocrystals.Not only does the efficiency of the developed filters remain at or above 97%for 0.50-1.5μm PMs but the durability also significantly increases.In addition,using the water purification ability of the MOF,we explore the dye degradation effect of the hybrid microfibers by immersing them into Rhodamine B aqueous solution.In such an experiment the Rhodamine B aqueous solution is completely purified by the presence of the hybrid microfibers under the UV irradiation.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina ,ChineseAcademyofSciencesandtheMajorStateBasicResearchDevelopmentProgram (No .G19990 330 )
文摘Organic nanocrystals of 1,3,5-triphenyl-2-pyrazoline (TPP) with a series of sizes were synthesized by reprecipitation method. The luminescence quantum efficiency of TPP nanocrystals increases from 24.2% for the nanocrystals with an average size of 300 nm to 34.6% for those with an average size of 20 nm. Surface capping by polyvinyl pyrrolidone (PVP) will improve the quantum efficiency of TPP nanocrystals. The size-dependence and capping-induced variation of the luminescence quantum efficiency was elucidated in viewpoint of aggregation quenching and the equilibrium between the TPP monomers and the aggregates in TPP nanocrystals.