Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch...For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.展开更多
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater...Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.展开更多
Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of...Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.展开更多
The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO...The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO3]2·2.33H2O(1), [CuL]3[V(10)O(28)]·8H2O(2) and [Cu L]3[V6O(18)]·8H2O(3). Single-crystal X-ray diffraction analyses reveal that three diverse vanadium polyoxoanions, [V6O(18)]6- ring, [V(10)O(28)]6- cluster, and [V(12)O(35)]^10- ring, were isolated from the same reactant NH4VO3 under different conditions. The [CuL]^2+ bridges the [V10O28]6- clusters to form a two-dimensional sheet in 2, and link the [V6O(18)]^6- rings in 1 and [V(12)O(35)]^10- rings in 3 into three-dimensional frameworks, respectively.展开更多
Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impreg...Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.展开更多
A novel organic-inorganic complex [Ca(DMSO)5(H2O)]2SiMo12O40 was synthesized from CaCl2, DMSO and H4SiMo12O40nH2O in mixed solvent of acetonitrile and water. Its structure was characterized with elemental analysis, I...A novel organic-inorganic complex [Ca(DMSO)5(H2O)]2SiMo12O40 was synthesized from CaCl2, DMSO and H4SiMo12O40nH2O in mixed solvent of acetonitrile and water. Its structure was characterized with elemental analysis, IR and X-ray diffraction analysis.展开更多
The synthesis and crystal smacture of an polyoxometalate-based organic-inorganic complex [Cu(DMF)3(H2O)212[SiMo12O40].2H2O (DMF = N, N-dimethyl formamide) is described in this article. It was characterized using...The synthesis and crystal smacture of an polyoxometalate-based organic-inorganic complex [Cu(DMF)3(H2O)212[SiMo12O40].2H2O (DMF = N, N-dimethyl formamide) is described in this article. It was characterized using elemental analysis, thermal analysis, infrared, ultraviolet, and electron spin resonance spectroscopic studies. The X-ray crystallography analysis showed that the copper centers are pentacoordinated to show the square pyramidal geometry, and the polyanion [SiMo12O40]4- which is semi-coordinated to the copper(I/) centers prevents the existence of a sixth ligand. In addition, the intracationic hydrogen interaction enhanced the stability of the copper coordination cation.展开更多
An organic-inorganic mercury coordination compound [Hg(DMSO)2(H2O)]2 [GeW12O40]· DMSO·H2O (DMSO =dimethyl sulfoxide) has been synthesized and characterized by IR, UV spectra, elemental analysis, TG-DTA...An organic-inorganic mercury coordination compound [Hg(DMSO)2(H2O)]2 [GeW12O40]· DMSO·H2O (DMSO =dimethyl sulfoxide) has been synthesized and characterized by IR, UV spectra, elemental analysis, TG-DTA and X-ray single-crystal diffraction. Structural analysis revealed that in the title compound, the mercury is three-coordinated to show the distorted trigonal cone geometry, and depending on the electrostatic interaction to connect the polyanion [α-GeW12O40]^4-. TG-DTA study manifests the decomposition temperature of the polyanion framework in the title compound is 513.5℃, which is much higher than that of the anion framework. It means that the formation of the organic-inorganic mercury coordination compound made the polyanion [α-GeW12O40]^4- to he more stable.展开更多
In the industrial engineering, the maintenance and logistics support process is one of the key factors for the performance of equipment. Bill of materials( BOM) describes all the components in product and internal hie...In the industrial engineering, the maintenance and logistics support process is one of the key factors for the performance of equipment. Bill of materials( BOM) describes all the components in product and internal hierarchal relationships as a structured tree.In order to gain all required maintenance information for complex equipment which is complex,the modeling and the application of maintenance BOM are introduced in this paper. Because of the simple structure and the wide function,IDEF0 is presented to build the model of maintenance BOM. The modeling approach can gather the maintenance information conveniently based on other BOMs,and applications of maintenance BOM are widely,particularly,in maintenance and inventory management.展开更多
The generalized two_dimensional problem of a dielectric rigid line inclusion, at the interface between two dissimilar piezoelectric media subjected to piecewise uniform loads at infinity, is studied by means of the St...The generalized two_dimensional problem of a dielectric rigid line inclusion, at the interface between two dissimilar piezoelectric media subjected to piecewise uniform loads at infinity, is studied by means of the Stroh theory. The problem was reduced to a Hilbert problem, and then closed_form expressions were obtained, respectively, for the complex potentials in piezoelectric media, the electric field inside the inclusion and the tip fields near the inclusion. It is shown that in the media, all field variables near the inclusion_tip show square root singularity and oscillatory singularity, the intensity of which is dependent on the material constants and the strains at infinity. In addition, it is found that the electric field inside the inclusion is singular and oscillatory too, when approaching the inclusion_tips from inside the inclusion.展开更多
A mode Ⅲ crack problem in a transversely isotropic piezoelectric material subjected to uniform loads at infinity is studied based on exact boundary conditions. The complex potential approach is used to reduce the pro...A mode Ⅲ crack problem in a transversely isotropic piezoelectric material subjected to uniform loads at infinity is studied based on exact boundary conditions. The complex potential approach is used to reduce the problem to Hilbert problem. As a result, closed form field solutions in the piezoelectric material and inside the crack are presented. It is shown that the stresses and electric displacement have square root singularities at the crack tips, but the electric field is uniform everywhere in the material and equal to the remote applied one. It is also found that the electric displacement intensity factor depends on both material properties and the mechanical loads, but not the electric loads. Hence it may be concluded that the electric loads have no influence on the field singularities.展开更多
At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and thre...At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared(FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4.At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2-in nucleic acids.展开更多
Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymeriz...Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymerization of EMA, the hybrid material containing Tb(acac) 3·dam was obtained. The hybrid material exhibited good toughness and transparency and higher thermal stability than that of the pure complex and pure polymer matrix. In the range of doping concentration of Tb(acac) 3·dam (0.05%, 0.1%, 0.2%, 0.5%, 1.0%, 2.0% and 5.0%), emission intensity increases with the increasing of corresponding doping concentration and concentration quenching effect has not taken place.展开更多
An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manip...An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.展开更多
Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid o...Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g.high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites.As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility,low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices.展开更多
The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal e...The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal expansion coefficient,vary in an exponential function.Using the Fourier transform technique,the electro-thermoelastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density,the normal energy flux,and the contact pressure.Meanwhile,the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula.After addressing the non-linearity excited by thermoelectric effects,the particular solutions of the displacement fields can be assessed.The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented.The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials(FGTEMs).展开更多
Photoresists are radiation-sensitive materials used for forming patterns to build up IC devices.To date,most photoresists have been based on organic polymers,which have been dominating the semiconductor industries ove...Photoresists are radiation-sensitive materials used for forming patterns to build up IC devices.To date,most photoresists have been based on organic polymers,which have been dominating the semiconductor industries over the past few decades.It is obvious that extreme ultraviolet(EUV)lithography has become the next-generation lithography technology.The development of comprehensive performance EUV resist is one of the most critical issues.However,organic polymeric photoresists are difficult to meet the harsh requirements of EUV lithography.Pure inorganic photoresists such as metal salts,hydrogen silsesquioxane(HSQ)are expected for EUV lithography due to their high resistance and high resolution.But the low sensitivity makes them not suitable for high volume manufacturing(HVM).Organic-inorganic hybrid photoresists,containing both organic and inorganic components,are regarded as one of the most promising EUV resists.They combine both merits of organic and inorganic materials and have significant advantages in machinability,etching resistance,EUV absorption,and chemical/thermal stability.Organic-inorganic hybrid photoresists are considered as ideal materials for realizing industrialgrade patterns below 10 nm.This review mainly focuses on the development of organic-inorganic hybrid photoresists over the past decade.展开更多
The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, th...The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, the test data in requirement of traditional impedance method are "just enough" and not "redundant" to comprehensively evaluate the electromagnetic properties of materials. A novel optimization approach involving multiple impedance measurements is introduced in this paper to implement automatic measurement for electromagnetic parameters on microwave slot-line. Some results for standard samples and microwave absorbing materials are given.展开更多
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(Nos.21931002 and 22101123)the National Key Research and Development Program of China(2018YFB0704100)+4 种基金the Shenzhen Science and Technology Innovation Committee(no.JCYJ20200109140812302)the Leading talents of Guangdong province program(2016LJ06N507)the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(no.2018B030322001)the Guangdong Provincial Key Laboratory of Catalysis(no.2020B121201002)Outstanding Talents Training Fund in Shenzhen.
文摘For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.
文摘Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.
基金Supported by the Opening Project of Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South(XNZW14C08)the NSF of Hunan Province(2015JJ2072)+2 种基金the Construct Program of the Key Discipline in Hunan Provincethe Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Project for Undergraduate Research Study and Innovative Experiment of Hunan Provincial(2016-283)
文摘The reactions of the four-coordinated macrocyclic copper complex [CuL](ClO4)2(L = 1,4,8,11-tetraazacyclotetradecane) with NH4VO3 under different conditions gave three inorganic-organic hybrid materials of [CuL][VO3]2·2.33H2O(1), [CuL]3[V(10)O(28)]·8H2O(2) and [Cu L]3[V6O(18)]·8H2O(3). Single-crystal X-ray diffraction analyses reveal that three diverse vanadium polyoxoanions, [V6O(18)]6- ring, [V(10)O(28)]6- cluster, and [V(12)O(35)]^10- ring, were isolated from the same reactant NH4VO3 under different conditions. The [CuL]^2+ bridges the [V10O28]6- clusters to form a two-dimensional sheet in 2, and link the [V6O(18)]^6- rings in 1 and [V(12)O(35)]^10- rings in 3 into three-dimensional frameworks, respectively.
基金financial supportfrom PRAMX 98-05 and helpful discussion with Dr.A.C.Franville.
文摘Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.
文摘A novel organic-inorganic complex [Ca(DMSO)5(H2O)]2SiMo12O40 was synthesized from CaCl2, DMSO and H4SiMo12O40nH2O in mixed solvent of acetonitrile and water. Its structure was characterized with elemental analysis, IR and X-ray diffraction analysis.
基金financially supported by the National Natural Science Foundation of China (No. 2057023)the Program for New Century Excellent Talents in Universities of Henan Province (No. 2005HANCET)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20040475001)Henan Innovation Project for University Prominent Re-search Talents (No. 2005KYCX011)the Natural Science Foundation of Henan Province, China (No. 0411051700)
文摘The synthesis and crystal smacture of an polyoxometalate-based organic-inorganic complex [Cu(DMF)3(H2O)212[SiMo12O40].2H2O (DMF = N, N-dimethyl formamide) is described in this article. It was characterized using elemental analysis, thermal analysis, infrared, ultraviolet, and electron spin resonance spectroscopic studies. The X-ray crystallography analysis showed that the copper centers are pentacoordinated to show the square pyramidal geometry, and the polyanion [SiMo12O40]4- which is semi-coordinated to the copper(I/) centers prevents the existence of a sixth ligand. In addition, the intracationic hydrogen interaction enhanced the stability of the copper coordination cation.
文摘An organic-inorganic mercury coordination compound [Hg(DMSO)2(H2O)]2 [GeW12O40]· DMSO·H2O (DMSO =dimethyl sulfoxide) has been synthesized and characterized by IR, UV spectra, elemental analysis, TG-DTA and X-ray single-crystal diffraction. Structural analysis revealed that in the title compound, the mercury is three-coordinated to show the distorted trigonal cone geometry, and depending on the electrostatic interaction to connect the polyanion [α-GeW12O40]^4-. TG-DTA study manifests the decomposition temperature of the polyanion framework in the title compound is 513.5℃, which is much higher than that of the anion framework. It means that the formation of the organic-inorganic mercury coordination compound made the polyanion [α-GeW12O40]^4- to he more stable.
基金National Natural Science Foundation of China(No.71471147)the Basic Research Project of Natural Science in Shaanxi Province of China(No.2015JQ7273)the 111 Project of China(No.B13044)
文摘In the industrial engineering, the maintenance and logistics support process is one of the key factors for the performance of equipment. Bill of materials( BOM) describes all the components in product and internal hierarchal relationships as a structured tree.In order to gain all required maintenance information for complex equipment which is complex,the modeling and the application of maintenance BOM are introduced in this paper. Because of the simple structure and the wide function,IDEF0 is presented to build the model of maintenance BOM. The modeling approach can gather the maintenance information conveniently based on other BOMs,and applications of maintenance BOM are widely,particularly,in maintenance and inventory management.
文摘The generalized two_dimensional problem of a dielectric rigid line inclusion, at the interface between two dissimilar piezoelectric media subjected to piecewise uniform loads at infinity, is studied by means of the Stroh theory. The problem was reduced to a Hilbert problem, and then closed_form expressions were obtained, respectively, for the complex potentials in piezoelectric media, the electric field inside the inclusion and the tip fields near the inclusion. It is shown that in the media, all field variables near the inclusion_tip show square root singularity and oscillatory singularity, the intensity of which is dependent on the material constants and the strains at infinity. In addition, it is found that the electric field inside the inclusion is singular and oscillatory too, when approaching the inclusion_tips from inside the inclusion.
文摘A mode Ⅲ crack problem in a transversely isotropic piezoelectric material subjected to uniform loads at infinity is studied based on exact boundary conditions. The complex potential approach is used to reduce the problem to Hilbert problem. As a result, closed form field solutions in the piezoelectric material and inside the crack are presented. It is shown that the stresses and electric displacement have square root singularities at the crack tips, but the electric field is uniform everywhere in the material and equal to the remote applied one. It is also found that the electric displacement intensity factor depends on both material properties and the mechanical loads, but not the electric loads. Hence it may be concluded that the electric loads have no influence on the field singularities.
基金supported by the National Natural Science Foundation of China(Grant Nos.61271353 and 60908033)the Natural Science Foundation of Anhui Province,China(Grant No.1408085MKL47)
文摘At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared(FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4.At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2-in nucleic acids.
文摘Ethyl methacrylate (EMA) doped with luminescent ternary terbium complex (Tb(acac) 3·dam) with acetylacetone (Hacac) and diantipylmethane (dam) was incorporated into the microporous silica gel. With the polymerization of EMA, the hybrid material containing Tb(acac) 3·dam was obtained. The hybrid material exhibited good toughness and transparency and higher thermal stability than that of the pure complex and pure polymer matrix. In the range of doping concentration of Tb(acac) 3·dam (0.05%, 0.1%, 0.2%, 0.5%, 1.0%, 2.0% and 5.0%), emission intensity increases with the increasing of corresponding doping concentration and concentration quenching effect has not taken place.
文摘An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.
基金supported by the National Higher Education Institution General Research and Development Funding under Grant No.ZYGX2012J034National Basic Research Program of China(973)under Grants No.2015CB358600 and No.2013CB933801
文摘Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g.high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites.As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility,low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices.
基金supported by the National Natural Science Foundation of China(Nos.11972257,11832014,11762016,11472193)the Fundamental Research Funds for the Central Universities(No.22120180223)。
文摘The contact problem for thermoelectric materials with functionally graded properties is considered.The material properties,such as the electric conductivity,the thermal conductivity,the shear modulus,and the thermal expansion coefficient,vary in an exponential function.Using the Fourier transform technique,the electro-thermoelastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density,the normal energy flux,and the contact pressure.Meanwhile,the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula.After addressing the non-linearity excited by thermoelectric effects,the particular solutions of the displacement fields can be assessed.The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented.The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials(FGTEMs).
基金Financial support from the National Natural Science Foundation of China(22090012,U20A20144,21873106,22073108 and 21903085)the Ministry of Science and Technology of China Major Project(2018ZX02102005,2011ZX02701)is gratefully acknowledged.
文摘Photoresists are radiation-sensitive materials used for forming patterns to build up IC devices.To date,most photoresists have been based on organic polymers,which have been dominating the semiconductor industries over the past few decades.It is obvious that extreme ultraviolet(EUV)lithography has become the next-generation lithography technology.The development of comprehensive performance EUV resist is one of the most critical issues.However,organic polymeric photoresists are difficult to meet the harsh requirements of EUV lithography.Pure inorganic photoresists such as metal salts,hydrogen silsesquioxane(HSQ)are expected for EUV lithography due to their high resistance and high resolution.But the low sensitivity makes them not suitable for high volume manufacturing(HVM).Organic-inorganic hybrid photoresists,containing both organic and inorganic components,are regarded as one of the most promising EUV resists.They combine both merits of organic and inorganic materials and have significant advantages in machinability,etching resistance,EUV absorption,and chemical/thermal stability.Organic-inorganic hybrid photoresists are considered as ideal materials for realizing industrialgrade patterns below 10 nm.This review mainly focuses on the development of organic-inorganic hybrid photoresists over the past decade.
文摘The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, the test data in requirement of traditional impedance method are "just enough" and not "redundant" to comprehensively evaluate the electromagnetic properties of materials. A novel optimization approach involving multiple impedance measurements is introduced in this paper to implement automatic measurement for electromagnetic parameters on microwave slot-line. Some results for standard samples and microwave absorbing materials are given.