Changes of soil organic nitrogen forms and soil nitrogen supply under continuous rice cropping system were investigated in a long-term fertilization experiment in Jinhua, Zhejiang Province, China. The fertilizer treat...Changes of soil organic nitrogen forms and soil nitrogen supply under continuous rice cropping system were investigated in a long-term fertilization experiment in Jinhua, Zhejiang Province, China. The fertilizer treatments included combination of P-K, N-K, N-P, and N-P-K as well as the control. After six years of continuous double-rice cropping, total soil N and hydrolysable N contents remained stable in plots with N treatments, while the hydrolysable N contents were substantially reduced in those plots without N application. Compared to the unbalanced fertilization treatments, P and K increased the percentage of hydrolysable ammonium N in the total soil N with the balanced application of N, and also maintained higher rice grain yields and nitrogen uptake. Grain yield was positively correlated with total N uptake (r = 0.875**), hydrolysable N (r = 0.608**), hydrolysable ammonium N (r = 0.560**) and the hydrolysable unknown N (r = 0.417**). Total N uptake was positively correlated with hydrolysable N (r = 0.608**), hydrolysable ammonium N (r = 0.440**) and hydrolysable unknown N (r = 0.431**). Soil nutrient depletion and/or unbalanced fertilization to rice crop reduced N content in soil microbial biomass, and therefore increased C/N ratio, suggesting a negative effect on the total microbial biomass in the soil.展开更多
In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the ...In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.展开更多
The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low va...The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.展开更多
In this paper, we begin with the swift changes in the knowledge economy time,analyze the implication of the agility, and consider the agile virtual enterprise as the mainorganizational form for the manufacturing enter...In this paper, we begin with the swift changes in the knowledge economy time,analyze the implication of the agility, and consider the agile virtual enterprise as the mainorganizational form for the manufacturing enterprises to realize agility. We classify the agilevirtual enterprises into products alliance style and knowledge alliance style, and compares theirmain features and profit distribution models. As a result, we give four basic structures for thebuilding and running of the agile virtual enterprises.展开更多
Digital innovation is becoming increasingly important in today's economy. Many digital innovations are developed not within organizations, but in innovation-driven entrepreneurial ecosystems, where various entreprene...Digital innovation is becoming increasingly important in today's economy. Many digital innovations are developed not within organizations, but in innovation-driven entrepreneurial ecosystems, where various entrepreneurship related stakeholders collaborate and cooperate. Despite its significance, studies on digital entrepreneurship ecosystems (DEEs) are limited and the concept is largely undertheorized. This study intends to fill that gap by studying how a DEE organizes. This organizing issue is challenging, because stakeholders of a DEE are self-organizing and are not governed by any formal authority. To answer that question, we adopt forms of organizing as a theoretical lens, which provides structure to examine organizing issues. Through an in-depth case study of Zhongguancun, the Silicon Valley of China, we unveil eight processes around the themes of division of labor and integration of efforts. We further show that the forms of organizing feature a balance of centralized design and de-centralized emergence. This balanced view extends the forms of organizing literature, which takes an either/or perspective. Ecosystem architects and policy makers who intend to build entrepreneurship ecosystems to promote local economies can derive practical implications from our findings.展开更多
Sequencing batch reactor(SBR)for enhanced biological phosphorus removal(EBPR)processes was used to investigate the impact of the temperature shock on the competition between phosphorus-accumulating organisms(PAOs)and ...Sequencing batch reactor(SBR)for enhanced biological phosphorus removal(EBPR)processes was used to investigate the impact of the temperature shock on the competition between phosphorus-accumulating organisms(PAOs)and glycogen accumulating organisms(GAOs)in start-up stage.During the 34 days operation,SBR was set with temperature variation(0-5 d,22±1℃;6-13 d,29±1℃;14-34 d,14±1℃).PAOs and GAOs were analyzed by fluorescent in situ hybridization(FISH),and intracellular polyphosphate granules were stained by Neisser-stain.The results showed that the influence of temperature shock on PAOs’abundance was more serious than that on GAOs in the enriching process.Under sudden and substantially temperature variation,from 22±1℃ to 29±1℃ and then to 14±1℃,the domination of PAOs was deteriorated.After temperature shock,PAOs’competitive advantages at low temperature that concluded in other study did not appear in our study.As mesophilic,GAOs(indicated by Alphaproteobacteria and Gammaproteobacteria)were more temperature adaptive and better grew and took the domination at 14±1℃ in the end.In the competition process,organisms of tetrad forming organisms(TFOs)-like shape which were considered as typical GAOs,were observed.With the evidence of poly-P granules containing by Neisser-straining and result of FISH,these organisms of TFOs-like shape were better to be assumed as adaption state or a special self-protecting shape of PAOs.展开更多
基金Project supported by the International Fertilizer Industry Association (IFI), Francethe Potast & Phosphate Institute (PPI), USA and Canadathe International Potassium Institute (IPI), Switzerland
文摘Changes of soil organic nitrogen forms and soil nitrogen supply under continuous rice cropping system were investigated in a long-term fertilization experiment in Jinhua, Zhejiang Province, China. The fertilizer treatments included combination of P-K, N-K, N-P, and N-P-K as well as the control. After six years of continuous double-rice cropping, total soil N and hydrolysable N contents remained stable in plots with N treatments, while the hydrolysable N contents were substantially reduced in those plots without N application. Compared to the unbalanced fertilization treatments, P and K increased the percentage of hydrolysable ammonium N in the total soil N with the balanced application of N, and also maintained higher rice grain yields and nitrogen uptake. Grain yield was positively correlated with total N uptake (r = 0.875**), hydrolysable N (r = 0.608**), hydrolysable ammonium N (r = 0.560**) and the hydrolysable unknown N (r = 0.417**). Total N uptake was positively correlated with hydrolysable N (r = 0.608**), hydrolysable ammonium N (r = 0.440**) and hydrolysable unknown N (r = 0.431**). Soil nutrient depletion and/or unbalanced fertilization to rice crop reduced N content in soil microbial biomass, and therefore increased C/N ratio, suggesting a negative effect on the total microbial biomass in the soil.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390080 and 30370287).
文摘In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201004)Jilin Provincial Research Foundation for Basic Research, China (201105033)
文摘The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.
文摘In this paper, we begin with the swift changes in the knowledge economy time,analyze the implication of the agility, and consider the agile virtual enterprise as the mainorganizational form for the manufacturing enterprises to realize agility. We classify the agilevirtual enterprises into products alliance style and knowledge alliance style, and compares theirmain features and profit distribution models. As a result, we give four basic structures for thebuilding and running of the agile virtual enterprises.
基金This research is supported by the National Natural Science Foundation of China (71402187), and Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (15XNF023). For helpful comments, we thank two anonymous referees, English editor in FBR, Meng Zhao, Xiaoyu Ji, Shan Wang, Ruidong Zhang and the 2016 Frontiers of Business Research in China International Symposium.
文摘Digital innovation is becoming increasingly important in today's economy. Many digital innovations are developed not within organizations, but in innovation-driven entrepreneurial ecosystems, where various entrepreneurship related stakeholders collaborate and cooperate. Despite its significance, studies on digital entrepreneurship ecosystems (DEEs) are limited and the concept is largely undertheorized. This study intends to fill that gap by studying how a DEE organizes. This organizing issue is challenging, because stakeholders of a DEE are self-organizing and are not governed by any formal authority. To answer that question, we adopt forms of organizing as a theoretical lens, which provides structure to examine organizing issues. Through an in-depth case study of Zhongguancun, the Silicon Valley of China, we unveil eight processes around the themes of division of labor and integration of efforts. We further show that the forms of organizing feature a balance of centralized design and de-centralized emergence. This balanced view extends the forms of organizing literature, which takes an either/or perspective. Ecosystem architects and policy makers who intend to build entrepreneurship ecosystems to promote local economies can derive practical implications from our findings.
基金This research was supported by the National Nature Science Foundation of China(Grant No.50821002,National Creative Research Groups)Mega-Projects of Science Research for Water(No.2008ZX07207-005-003)the National Natural Science Foundation of China(Grant No.50638020).
文摘Sequencing batch reactor(SBR)for enhanced biological phosphorus removal(EBPR)processes was used to investigate the impact of the temperature shock on the competition between phosphorus-accumulating organisms(PAOs)and glycogen accumulating organisms(GAOs)in start-up stage.During the 34 days operation,SBR was set with temperature variation(0-5 d,22±1℃;6-13 d,29±1℃;14-34 d,14±1℃).PAOs and GAOs were analyzed by fluorescent in situ hybridization(FISH),and intracellular polyphosphate granules were stained by Neisser-stain.The results showed that the influence of temperature shock on PAOs’abundance was more serious than that on GAOs in the enriching process.Under sudden and substantially temperature variation,from 22±1℃ to 29±1℃ and then to 14±1℃,the domination of PAOs was deteriorated.After temperature shock,PAOs’competitive advantages at low temperature that concluded in other study did not appear in our study.As mesophilic,GAOs(indicated by Alphaproteobacteria and Gammaproteobacteria)were more temperature adaptive and better grew and took the domination at 14±1℃ in the end.In the competition process,organisms of tetrad forming organisms(TFOs)-like shape which were considered as typical GAOs,were observed.With the evidence of poly-P granules containing by Neisser-straining and result of FISH,these organisms of TFOs-like shape were better to be assumed as adaption state or a special self-protecting shape of PAOs.