Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put for...Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.展开更多
Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This pap...Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice,and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation’s ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.Design/methodology/approach–This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology,management and structural reconstruction to reduce energy consumption and carbon emissions.Among them,the effect of structural energy conservation and emission reduction has become more prominent.It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors.The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.Findings–Key aspects in improving energy efficiency include re-optimization of energy structure,reinnovation of energy-saving technologies and optimization of transportation organization.Path selection includes continuing to promote electrified railway construction,increasing the use of new and renewable energy sources,and promoting the reform of railway transportation organizations.Originality/value–This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies,approaches for practice in a Chinese context.To achieve the expected goals,relevant supporting policies and measures need to be formulated,including actively guiding integrated transportation toward railway-oriented development,promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives,focusing on improving the energy efficiency of railways through market behavior.At the same time,it is necessary to pay attention to new phenomena in the railway industry for track and analysis.展开更多
Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger ...Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger volume distribution. Influenced urban realm around station becomes the focus of the optimization of the sustainable urban development. Pedestrian microscopic simulation method establishes the comprehensive dynamic behavior rules in a part of urban space through simulating the behavior law by digital tools, in which the internal demand and motive mechanism of the development and change of urban space fairly well by digital representing and analyzing relevant laws can be explained. After that, the research with the realm as the carrier analyzed the demand of each simulation level and the choice of simulation parameters based on analyzing the walking connection behavior characteristics, and then further established the methodology system of pedestrian microscopic simulation. At last, the research taking the study of influenced urban realm around typical station for sample explored the application method of optimizing of urban space and traffic organization based on AnyLogic platform.展开更多
Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- c...Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- cover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was per- formed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy effi- ciency or power output as the objective function by means of Penalty Function and Golden Section Searching algo- rithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.展开更多
The complexity of communication and coordination stemming from teams responsible for adjusting interdependent parameters of components is a fundamental feature in the aircraft engine remanufacturing engineering projec...The complexity of communication and coordination stemming from teams responsible for adjusting interdependent parameters of components is a fundamental feature in the aircraft engine remanufacturing engineering project. To manage coordination complexity, the features of the remanufacturing process of aircraft engine are analyzed and a systematic method is presented to measure and optimize the dependency between coupled components.Furthermore, quantitative models are built based on Design Structure Matrix(DSM) models to measure dependency strengths related to the parameter features of the components. Also, a two-stage DSM clustering criteria is used to reduce the complexity of an organization. An industrial example is provided to illustrate the proposed models. The results showed that the proposed approach can reduce total coordination complexity.展开更多
文摘Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.
文摘Purpose–Under the dual pressure of resources and environment,many countries have focused on the role of railways in promoting low-carbon development of integrated transportation and of even the whole society.This paper aims to provide a comprehensive study on methods to improve railway energy efficiency in other national railways and achievements made by China’s railways in the past practice,and then to propose ways in which in the future China’s railways could rationally select the path of improving energy efficiency regarding the needs of the nation’s ever-shifting development and carry out the re-engineering for mechanism innovation in energy conservation and emission reduction process.Design/methodology/approach–This paper first studies other national railways that have tried to promote the improvement of railway energy efficiency by the ways of technology,management and structural reconstruction to reduce energy consumption and carbon emissions.Among them,the effect of structural energy conservation and emission reduction has become more prominent.It has become the main energy conservation and emission reduction measure adopted by foreign railway sectors.The practice of energy conservation and emission reduction of railways in various countries has tended to shift from a technical level to a structural one.Findings–Key aspects in improving energy efficiency include re-optimization of energy structure,reinnovation of energy-saving technologies and optimization of transportation organization.Path selection includes continuing to promote electrified railway construction,increasing the use of new and renewable energy sources,and promoting the reform of railway transportation organizations.Originality/value–This paper provides further challenges and research directions in the proposed area and has referential value for the methodologies,approaches for practice in a Chinese context.To achieve the expected goals,relevant supporting policies and measures need to be formulated,including actively guiding integrated transportation toward railway-oriented development,promoting innovation in energy-saving and emission reduction mechanisms and strengthening policy incentives,focusing on improving the energy efficiency of railways through market behavior.At the same time,it is necessary to pay attention to new phenomena in the railway industry for track and analysis.
文摘Under the background of urban rail transit's rapid development, urban rail transit station, as the only connection of urban space and rail transit, undertakes the responsibility of traffic organization and passenger volume distribution. Influenced urban realm around station becomes the focus of the optimization of the sustainable urban development. Pedestrian microscopic simulation method establishes the comprehensive dynamic behavior rules in a part of urban space through simulating the behavior law by digital tools, in which the internal demand and motive mechanism of the development and change of urban space fairly well by digital representing and analyzing relevant laws can be explained. After that, the research with the realm as the carrier analyzed the demand of each simulation level and the choice of simulation parameters based on analyzing the walking connection behavior characteristics, and then further established the methodology system of pedestrian microscopic simulation. At last, the research taking the study of influenced urban realm around typical station for sample explored the application method of optimizing of urban space and traffic organization based on AnyLogic platform.
基金Sponsored by National Natural Science Foundation of China (5106602,U0937604)Natural Science Foundation of Yunnan Provincial (2008KA002,2008CD001)
文摘Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- cover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was per- formed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy effi- ciency or power output as the objective function by means of Penalty Function and Golden Section Searching algo- rithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.
基金supported by the National Natural Science Foundation of China (No.71472013 No.71528005)
文摘The complexity of communication and coordination stemming from teams responsible for adjusting interdependent parameters of components is a fundamental feature in the aircraft engine remanufacturing engineering project. To manage coordination complexity, the features of the remanufacturing process of aircraft engine are analyzed and a systematic method is presented to measure and optimize the dependency between coupled components.Furthermore, quantitative models are built based on Design Structure Matrix(DSM) models to measure dependency strengths related to the parameter features of the components. Also, a two-stage DSM clustering criteria is used to reduce the complexity of an organization. An industrial example is provided to illustrate the proposed models. The results showed that the proposed approach can reduce total coordination complexity.