Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organ...Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organogels in various organic fluids via ultrasound treatment or heating-cooling process, whereas compound 4c could only gel in a few mixed solvents and compounds 4a, 4b could not form organogel. The results from fluorescent and FT-IR spectra indicate that π-π interaction had an effect on the formation of the organogels of compound 4d besides H-bonding and van der Waals interaction, which were the driving forces for the self-assembling of compound 4c in gel state. The gel of compound 4d in toluene could emit strong fluorescence under UV irradiation and the [2+2] cyclo-addition was suggested by ^1H NMR and fluorescence spectroscopy. This light-sensitive organogel might find application in optical materials.展开更多
In the present study,gel formulations of organogels,hydrogels,and oleo-hydrogel(bigels)were evaluated as transdermal drug delivery systems for diltiazem HCL(DH).Organogels were prepared using soya-bean oil(SO)as a sol...In the present study,gel formulations of organogels,hydrogels,and oleo-hydrogel(bigels)were evaluated as transdermal drug delivery systems for diltiazem HCL(DH).Organogels were prepared using soya-bean oil(SO)as a solvent and span 60(Sp 60),cetyl alcohol(CA)or lecithinpluronic(PLO)as organogelators without and with different surfactants(2%w/w)namely span 80(Sp80),tween 20(T20)and tween 80(T80).On the other hand,hydrogels were formulated using Hydroxypropyl-methylcellulose(HPMC)polymer and bigels were prepared by mixing organogels with HPMC hydrogels.The prepared gels were analyzed microscopically,thermally by DTA and for pH,and viscosity.The effect of gelator used,surfactant types and pH of the sink on DH release from cellophane membrane was investigated.In addition,the DH permeability across the rabbit skin was evaluated.Finally,the in vivo performance of various gel formulationswas assessed based on the hypotensive effects of the drug using hypertensive albino male rat models.The microscopical analysis indicated that the solid fibers formed by gelator particles form the backbone of the organogels while bigels appeared as emulsion like.The addition of surfactants showed an increase in organogel viscosity.The thermal analysis of organogels indicated that the drug present in amorphous not in crystalline form.The release studies indicated that DH release from organogels,hydrogels and bigels could be controlled.The included surfactants decreased the DH release and permeation from organogels compared to those without surfactants using either Sp60 or CA.HPMC hydrogel and Bigels showed higher DH release and permeation rates when compared to organogels.The percent DH released in different pH values was in the following descending order:pH5.5>pH1.2>pH6.8>pH7.4.The in vivo antihypertensive activity of DH using different transdermal gels is arranged as following:hydrogels>PLO organogel>bigel>Sp 60 organogel.展开更多
<div style="text-align:justify;"> An organogelator named N-[3-(hydroxy)-4-(dodecyloxy)-benzoyl]-N’ (4’-nitro-benzoyl) hydrazide (D12) was synthesized. It could form stable gels in some of the tested ...<div style="text-align:justify;"> An organogelator named N-[3-(hydroxy)-4-(dodecyloxy)-benzoyl]-N’ (4’-nitro-benzoyl) hydrazide (D12) was synthesized. It could form stable gels in some of the tested organic solvent. SEM images revealed that the molecules self- assembled into fibrous aggregates in the xerogels. The X-ray diffraction analysis showed that the xerogel exhibited a layered structure. FT-IR studies confirmed that intermolecular hydrogen bonding between C=O and N-H groups was the major driving force for gelation of organic solvents. The gel exhibited gel-sol transition and color change upon addition of F<span style="font-size:10px;"><sup>- </sup></span>. An extended conjugated system formed through the phenyl group and a five-membered ring based on intramolecular hydro-gen bonding between the oxygen atom near the deprotonation nitrogen atom and the other NH, which is responsible for the dramatic color change upon addition of <span style="text-align:justify;white-space:normal;">F</span><span style="font-size:10px;text-align:justify;white-space:normal;"><sup>- </sup></span>. </div>展开更多
Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets wit...Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets with abundant acting sites,remarkable intermolecular interactions,and unique polymer-like properties,including flexibility,viscoelasticity,and sol-gel transitions,which is quite different from traditional inorganic materials.Consequently,subnanosheets could form freestanding organogels and OA-Al SNSs exhibit satisfying semisolidification of various solvents,making it an intriguing candidate for the safe storage and transportation of solvents.Furthermore,SA-Al SNSs exhibit excellent adhesive properties of high strength on diverse substrates,and it is easy to erase it without any damage,demonstrating the promising prospects in practical applications.展开更多
A series of p-alkoxylbenzamides featuring a long alkyl chain have been synthesized and are readily to form stable gels in a variety of organic solvents. Their selfassembly properties and structure-property relationshi...A series of p-alkoxylbenzamides featuring a long alkyl chain have been synthesized and are readily to form stable gels in a variety of organic solvents. Their selfassembly properties and structure-property relationship were investigated by scanning electron microscopy, X-ray diffraction, IH nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The gels formed were multi-responsive to environmental stimuli such as temperature and fluoride anion. The results show that a combination of hydrogen bonding, n-n stacking and van der Waals interaction result in the aggregation of palkoxylbenzamides to form three-dimension networks, depending on the length of the long alkyl chain.展开更多
Low-molecular-weight organogels(LMOG) have been attracting a surge interest in fabricating soft materials.Although the finding of the gelator molecules has been developed from serendipity to objective design,the achie...Low-molecular-weight organogels(LMOG) have been attracting a surge interest in fabricating soft materials.Although the finding of the gelator molecules has been developed from serendipity to objective design,the achievement of the gelator molecules still needs good design and tedious organic synthesis.In this paper,we proposed a simple and general mixing approach to get the organogel for nearly all the organic compounds and even soluble nanoparticles without any modification.We have designed a universal gelator molecule,which forms organogels with more than 40 kinds of organic solvents from aploar to polar solvents.More interestingly,when other organic compounds or even nanomaterials,which are soluble in certain organic solvents,are mixed with this gelator molecule,they can form organogels no matter whether the individual compounds could form organogel or not.This method is applicable to nearly all kinds of soluble organic compounds and opens an efficient and universal way to fabricate gel materials.展开更多
A novel nanomagnetic organogel was synthesized by in situ emulsion polymerization-crosslinking method using dodecyl methacrylate(DDMA) and styrene(St) as monomers, divinylbenzene(DVB) as a crosslinking agent, azobisis...A novel nanomagnetic organogel was synthesized by in situ emulsion polymerization-crosslinking method using dodecyl methacrylate(DDMA) and styrene(St) as monomers, divinylbenzene(DVB) as a crosslinking agent, azobisisobutyronitrile(AIBN) as an initiator, and Fe_3O_4 as a nanomagnetic particle. Modification of the network was carried out by inclusion of the multi-walled carbon nanotubes(MWCNT) into the organogel matrix. The structure of the nanocomposite was characterized using FTIR spectroscopy, SEM,TEM, TGA/DTG, VSM, and BET analysis. The effects of various parameters such as the amount of crosslinker, initiator, Fe_3O_4, and reaction time as well as monomer ratio on the oil absorption of the organogel were studied. The synthesized organogel can absorb about35.5, 22.1, 29.86, 14.58, 17.6, 15.3, and 13.7 g·g^(-1) of CHCl_3, toluene, CH_2Cl_2, hexane, crude oil, gasoline, and diesel oil, under the optimized polymerization conditions, respectively. The nanocomposite organogels can be easily separated by a magnetic field after absorption of organic solvents.展开更多
Smart flexible electronics with underwater motion detection have become a promising research aspect in intelligent perception.Inspired by the strong adaptability of marine creatures to complex underwater environments,...Smart flexible electronics with underwater motion detection have become a promising research aspect in intelligent perception.Inspired by the strong adaptability of marine creatures to complex underwater environments,conventional biocompatible hydrogels are worth developing into organogels with preferred underwater adhesive properties,hydrophobic and antiswelling performance,and motion perception ability.Herein,a highly sensitive organogel sensor exhibiting good hydrophobicity,electromechanical properties,and adhesion properties was prepared for underwater utilization by regulating the chemical components and internal interactions.The synergistic effect of massive reversible noncovalent bonds ensures the organogel’s excellent underwater adhesion to multifarious substrates.Meanwhile,the interactions of hydrophobic conductive fillers and the dynamic hydrophobic associations in the organogel endow it with satisfactory hydrophobic performance(contact angle of111.8°)and antiswelling property(equilibrium swelling ratio of-31%after 15-day immersion).The fabricated flexible organogel strain sensor exhibits high sensitivity(gauge factor of1.96),ultrafast response rate(79.1 ms),low limit of detection(0.45 Pa),and excellent cyclic stability(1044 tensile cycles followed by 3981 compressive cycles).Results demonstrate the proposed organogel’s precise perception of sophisticated human motions in air and underwater,which expands its application scenarios.展开更多
Four 2,5-dialkoxylphenyl-l,3,4-oxadiazoles are shown to be efficient organogelators. These com- pounds readily form stable gels in many organic solvents and their gelation property as well as supramolecular structures...Four 2,5-dialkoxylphenyl-l,3,4-oxadiazoles are shown to be efficient organogelators. These com- pounds readily form stable gels in many organic solvents and their gelation property as well as supramolecular structures were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), 1H nuclear magnetic resonance (1H NMR), and ultraviolet-visible spectroscopy (UV-vis). The results indicate that the gelator molecules self-assemble into gels with elongated fibrous networks and layer structures, and van der Waals interaction is the main driving force.展开更多
Fluorescent supramolecular nucleoside-based organogels or hydrogels have attracted increasing attention owing to their tunable stability,drug delivery,tissue engineering,and inherent biocompatibility for applications ...Fluorescent supramolecular nucleoside-based organogels or hydrogels have attracted increasing attention owing to their tunable stability,drug delivery,tissue engineering,and inherent biocompatibility for applications in designing sensors.As the temperature of a constant TPE-Octa-dU gelato r at MGC as low as 0.2 wt%was increased with gel to sol transition,a progressive decrease in the fluorescence intensity was observed.~1 H NMR study in ethanol-d_(6)/H_(2)O revealed the existence of intermolecular hydrogen-bond interaction between uridine nucleobase and triazole moieties.Based on these experiments,thus organogels induced by hydrogen bonding can promote an aggregation-induced emission(AIE)of TPE moiety.Thermoreversible gelation properties have been investigated systematically,including AIE-shapemorphing architecture owing to their unique solid-liquid interface and easy processability.At the same line,the related TPE-EdU derivative which was synthesized from 5-ethynyl-2'-deoxyuridine does not delive r organogels or hydrogels,a nd under similar circumstances TPE moiety of TPE-EdU does not efficiently exhibit AIE phenomenon either.展开更多
Atmospheric moisture exploitation is emerging as a promising alternative to relieve the shortage of freshwater and energy.Efforts to exploit hygroscopic materials featuring flexibility,programmability,and accessibilit...Atmospheric moisture exploitation is emerging as a promising alternative to relieve the shortage of freshwater and energy.Efforts to exploit hygroscopic materials featuring flexibility,programmability,and accessibility are crucial to portable and adaptable devices.However,current two-dimensional(2D)or three-dimensional(3D)-based hygroscopic materials are dif-ficult to adapt to diverse irregular surfaces and meet breathability,which severely hinders their wide applications in wearable and programmable devices.Herein,hygroscopic organogel fibers(HOGFs)were designed via a wet-spinning strategy.The achieved fibers were composed of the hydrophilic polymeric network,hygroscopic solvent,and photothermal/antibacterial Ag nanoparticles(AgNPs),enabling hygroscopic capacity,photothermal conversion,and antibacterial.Owing to the good knittable feature,the HOGFs can be readily woven to adjusted 2D textiles to function as an efficient self-sustained solar evaporator of 4-layer woven HOGF device with a saturated moisture capacity of 1.63 kg m^(-2) and water-releasing rate of 1.46 kg m^(-2) h^(-1).Furthermore,the 2D textile can be applied as a wearable dehumidification device to efficiently remove the evaporative moisture from human skin to maintain a comfortable environment.It can reduce the humidity from 90 to 33.4%within 12.5 min.In addition,the introduction of AgNPs can also endow the HOGFs with antibacterial features,demonstrat-ing significant potential in personal healthcare.展开更多
A new method to fabricate metal/conducting polymer composite nanowires is presented by taking silver/polypyrrole composite nanowires as an example. A silver (D-coordinated organogel as template was prepared firstly, ...A new method to fabricate metal/conducting polymer composite nanowires is presented by taking silver/polypyrrole composite nanowires as an example. A silver (D-coordinated organogel as template was prepared firstly, and redox-polymerization of pyrrole took place on the gel fiber, giving product of silver/polypyrrole nanowires. The silver/polypyrrole nanowires were characterized by multiple techniques. This strategy could be carried out in one-step procedure at room temperature, and it proves the utility of coordinated organogels in template synthesis of polymer nanostructures.展开更多
In this work, we investigated the effect of hydrophobic interactions between the polymeric backbone and chain-end groups on the self-assembly pathway of stearoyl appended side-chain valine(Val)-based poly(methacryl...In this work, we investigated the effect of hydrophobic interactions between the polymeric backbone and chain-end groups on the self-assembly pathway of stearoyl appended side-chain valine(Val)-based poly(methacrylate/acrylate) homopolymers in different organic hydrocarbons. Gelation studies conducted revealed that while polymers with polyacrylate as backbone induces gelation in several organic hydrocarbons, polymers with polymethacrylate in the main-chain significantly hinders macroscopic gelation. Morphology of the organogels was analysed by field emission scanning electron microscopy(FESEM), and mechanical strengths of the organogels were determined by rheological measurements. Reversible addition-fragmentation chain transfer(RAFT) polymerization chain transfer agents(CTA)s, [R1―S―C=(S)―S―R2] with different ―R1 and ―R2 groups, have been employed to study the effect of structural variation at the chain-end on macroscopic assembly mechanism. We found that the additional interactions between terminal groups via hydrogenbonding or π-π stacking interactions or both help to build up the self-assembly pathway and thereby produces mechanically stable organogels.展开更多
Skin aging is an unavoidable aspect of human life.Premature skin aging can result from poor care,environmental pollutants,and ultraviolet radiation exposure.Wrinkles,lines,spots,uneven skin tone,and pigmentation are o...Skin aging is an unavoidable aspect of human life.Premature skin aging can result from poor care,environmental pollutants,and ultraviolet radiation exposure.Wrinkles,lines,spots,uneven skin tone,and pigmentation are often indicators of skin aging.One cannot avoid aging but cosmetics and pharmaceutical approaches can minimize and delay the damage.Topical applications of biocompatible and biodegradable vehicles have been explored for delivering anti-aging compounds.Lecithin organogel(LO)is an effective vehicle for topical delivery of many bioactive agents used in aging treatment.Lecithin is cell component isolated from soya beans or eggs and purified to show excellent gelation in non-polar solvents when combined with water.LO can form a heat-stable,resistant to microbial growth,visco-elastic,optically transparent,and non-birefringent micellar system.It serves as an organic medium to enhance dermal permeation of poorly permeable drugs by effectively partitioning into the skin.Its ability to dissolve in hydrophilic as well as in lipophilic drugs makes it a dynamic vehicle,which can be explored as a carrier for anti-aging agents.展开更多
A series of cholesterol-appended quinacridone (QA) derivatives 1a-1d have been synthesized,in which 1b and 1c could form stable organogels in a wide range of organic solvents upon ultrasound irradiation.Field emission...A series of cholesterol-appended quinacridone (QA) derivatives 1a-1d have been synthesized,in which 1b and 1c could form stable organogels in a wide range of organic solvents upon ultrasound irradiation.Field emission scanning electronic microscope (FESEM) and transmission electron microscopy (TEM) of xerogels or precipitates indicated that 1b and 1c formed 1D fibrous nanostructure,while 1a assembled into 3D flower-like microstructures.The ultrasound-induced organogel process was characterized by kinetic UV-vis and photoluminescence spectroscopic methods suggesting the formation of ?-? aggregates in the gel state.Experimental results demonstrated that the ultrasound could promote molecules to contact frequently in the solution and induce semistable initial aggregates,which propagate to form nano/micro superstructures.The aggregation model was optimized by semiempirical AM1 calculation suggesting the hierarchical self-assembly process.In addition,the formed xerogel film exhibited mechanochromic property,and the phase transition process was accompanied by the fluorescence changes between yellowish green and orange.展开更多
A new organogelator based on Schiff base derivative has been designed and synthesized.It can be employed as building blocks to fabricate organic nano-or micro-structures.It shows excellent self-assembling properties.I...A new organogelator based on Schiff base derivative has been designed and synthesized.It can be employed as building blocks to fabricate organic nano-or micro-structures.It shows excellent self-assembling properties.It could form stable gels with nanofiber structures in various organic solvents,such as n-butanol,benzyl alcohol,ethyl acetate,acetone,aniline.The gelation properties,structural characteristics and fluorescence of the gels were studied.Compared with the solution,the gel showed significantly enhanced emission.This organogel system can be used as a thermally driven fluorescence molecular switch.展开更多
The development of functional flexible conductive materials can significantly contribute to the improvement of intelligent human–computer integration.However,it is a challenge to endow human–machine interface with p...The development of functional flexible conductive materials can significantly contribute to the improvement of intelligent human–computer integration.However,it is a challenge to endow human–machine interface with perception and response actuation simultaneously.Herein,a customizable and multifunctional electronic conductive organogel is proposed by combining conductive carbon nanotube(CNT)clusters and flexible adhesive organogels.The conductive CNT cluster layers generated on the surface of organogels equip the resulting organogel-based conductors with considerable quasi-superhydrophobicity and increase their potential applicability as highly sensitive stress and strain sensors.In particular,this quasi-superhydrophobicity is insensitive to tensile strain.Based on customizable conductive networks and entropy-driven organogel actuation,the conductive organogels can sense various strain and stress signals and imitate natural organisms with muscle actuation and neurofeedback.This strategy for preparing electronic conductors can enhance the rational design of soft robotics and artificial intelligence devices,facilitating further progress of human-like intelligent systems.展开更多
A phase-selective,bis-urea organogelator with a curved bis-naphthalene core was synthesized and characterized.This gelator is capable of gelating a variety of hydrocarbons and oils.The resulting gels have been charact...A phase-selective,bis-urea organogelator with a curved bis-naphthalene core was synthesized and characterized.This gelator is capable of gelating a variety of hydrocarbons and oils.The resulting gels have been characterized by rheology,SEM,and molecular modelling.The gelator can be applied in the powder form for the recovery of a thin layer of petrol oil spill in water.展开更多
A new simple pyrene-substituted acylhydrazone derivative, 4-(3,4-dioctyloxy) phenyl-l-pyrene acylhydrazone (PAH-8), was designed and synthesized. The PAH-8 can form thermo-reversible organogel in DMSO, and shows g...A new simple pyrene-substituted acylhydrazone derivative, 4-(3,4-dioctyloxy) phenyl-l-pyrene acylhydrazone (PAH-8), was designed and synthesized. The PAH-8 can form thermo-reversible organogel in DMSO, and shows gelation-induced enhanced fluorescence emission. Xerogel exhibits ribbon-like fibrous aggregates with widths of 0.5- 1 μm. The PAH-8 organogel indicates photo-responsive behaviors due to the trans-cis isomerizations of-C = N- bond upon exposure to visible or UV light. Upon visible light irradiation, the partial trans-cis isomerization of the -C=N- bond causes the fiber morphology to disappear, resulting in gel-sol transition, whereas the PAH-8 organogel exhibits few photoisomerizations from trans to cis transition without breakage of the gel state upon UV light irradiation.展开更多
In order to get direct evidence for the effect of intermolecular hydrogen bonding on the organogels, one arnide group in N-(3, 4, 5-octyloxybenzoyl)-N'-(4'-aminobenzoyl)hydrazine(D8) was replaced by a Schiff b...In order to get direct evidence for the effect of intermolecular hydrogen bonding on the organogels, one arnide group in N-(3, 4, 5-octyloxybenzoyl)-N'-(4'-aminobenzoyl)hydrazine(D8) was replaced by a Schiff base group, forming N-(3,4,5-octyloxybenzoyl)-N'-(4'-amidobenzoyl) acylhydrazone(T8SchA). D8 and T8SchA organogels in cyclohexane show the same hexagonal columnar structure. And the hydrogen bonding was demonstrated to be still interacting in the organogels. However, although the molecular geometry of D8 was well retained in T8SchA, the molecular dipole moment of T8SchA is bigger than that of D8 due to the reduction of the number of hydrogen bonds. Thus, the decreased gelling stability of T8SchA compared to that of D8 can only be attributed to the reduction of the number of intermolecular hydrogen bonds, which provides direct evidence that intermolecular hydrogen bonding plays an important role in stabilising organogels.展开更多
基金Sypported by National Natural Science Foundation of China(No.20574027)Program for New Century Excellent Talents in University.
文摘Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organogels in various organic fluids via ultrasound treatment or heating-cooling process, whereas compound 4c could only gel in a few mixed solvents and compounds 4a, 4b could not form organogel. The results from fluorescent and FT-IR spectra indicate that π-π interaction had an effect on the formation of the organogels of compound 4d besides H-bonding and van der Waals interaction, which were the driving forces for the self-assembling of compound 4c in gel state. The gel of compound 4d in toluene could emit strong fluorescence under UV irradiation and the [2+2] cyclo-addition was suggested by ^1H NMR and fluorescence spectroscopy. This light-sensitive organogel might find application in optical materials.
文摘In the present study,gel formulations of organogels,hydrogels,and oleo-hydrogel(bigels)were evaluated as transdermal drug delivery systems for diltiazem HCL(DH).Organogels were prepared using soya-bean oil(SO)as a solvent and span 60(Sp 60),cetyl alcohol(CA)or lecithinpluronic(PLO)as organogelators without and with different surfactants(2%w/w)namely span 80(Sp80),tween 20(T20)and tween 80(T80).On the other hand,hydrogels were formulated using Hydroxypropyl-methylcellulose(HPMC)polymer and bigels were prepared by mixing organogels with HPMC hydrogels.The prepared gels were analyzed microscopically,thermally by DTA and for pH,and viscosity.The effect of gelator used,surfactant types and pH of the sink on DH release from cellophane membrane was investigated.In addition,the DH permeability across the rabbit skin was evaluated.Finally,the in vivo performance of various gel formulationswas assessed based on the hypotensive effects of the drug using hypertensive albino male rat models.The microscopical analysis indicated that the solid fibers formed by gelator particles form the backbone of the organogels while bigels appeared as emulsion like.The addition of surfactants showed an increase in organogel viscosity.The thermal analysis of organogels indicated that the drug present in amorphous not in crystalline form.The release studies indicated that DH release from organogels,hydrogels and bigels could be controlled.The included surfactants decreased the DH release and permeation from organogels compared to those without surfactants using either Sp60 or CA.HPMC hydrogel and Bigels showed higher DH release and permeation rates when compared to organogels.The percent DH released in different pH values was in the following descending order:pH5.5>pH1.2>pH6.8>pH7.4.The in vivo antihypertensive activity of DH using different transdermal gels is arranged as following:hydrogels>PLO organogel>bigel>Sp 60 organogel.
文摘<div style="text-align:justify;"> An organogelator named N-[3-(hydroxy)-4-(dodecyloxy)-benzoyl]-N’ (4’-nitro-benzoyl) hydrazide (D12) was synthesized. It could form stable gels in some of the tested organic solvent. SEM images revealed that the molecules self- assembled into fibrous aggregates in the xerogels. The X-ray diffraction analysis showed that the xerogel exhibited a layered structure. FT-IR studies confirmed that intermolecular hydrogen bonding between C=O and N-H groups was the major driving force for gelation of organic solvents. The gel exhibited gel-sol transition and color change upon addition of F<span style="font-size:10px;"><sup>- </sup></span>. An extended conjugated system formed through the phenyl group and a five-membered ring based on intramolecular hydro-gen bonding between the oxygen atom near the deprotonation nitrogen atom and the other NH, which is responsible for the dramatic color change upon addition of <span style="text-align:justify;white-space:normal;">F</span><span style="font-size:10px;text-align:justify;white-space:normal;"><sup>- </sup></span>. </div>
基金supported by NSFC(22241502,22035004,and 22250710677).
文摘Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets with abundant acting sites,remarkable intermolecular interactions,and unique polymer-like properties,including flexibility,viscoelasticity,and sol-gel transitions,which is quite different from traditional inorganic materials.Consequently,subnanosheets could form freestanding organogels and OA-Al SNSs exhibit satisfying semisolidification of various solvents,making it an intriguing candidate for the safe storage and transportation of solvents.Furthermore,SA-Al SNSs exhibit excellent adhesive properties of high strength on diverse substrates,and it is easy to erase it without any damage,demonstrating the promising prospects in practical applications.
文摘A series of p-alkoxylbenzamides featuring a long alkyl chain have been synthesized and are readily to form stable gels in a variety of organic solvents. Their selfassembly properties and structure-property relationship were investigated by scanning electron microscopy, X-ray diffraction, IH nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The gels formed were multi-responsive to environmental stimuli such as temperature and fluoride anion. The results show that a combination of hydrogen bonding, n-n stacking and van der Waals interaction result in the aggregation of palkoxylbenzamides to form three-dimension networks, depending on the length of the long alkyl chain.
基金supported by the National Natural Science Foundation of China (50673095 and 21021003)the Basic Research Development Program (2007CB808005 and 2009CB930802)the Fund of the Chinese Academy of Sciences
文摘Low-molecular-weight organogels(LMOG) have been attracting a surge interest in fabricating soft materials.Although the finding of the gelator molecules has been developed from serendipity to objective design,the achievement of the gelator molecules still needs good design and tedious organic synthesis.In this paper,we proposed a simple and general mixing approach to get the organogel for nearly all the organic compounds and even soluble nanoparticles without any modification.We have designed a universal gelator molecule,which forms organogels with more than 40 kinds of organic solvents from aploar to polar solvents.More interestingly,when other organic compounds or even nanomaterials,which are soluble in certain organic solvents,are mixed with this gelator molecule,they can form organogels no matter whether the individual compounds could form organogel or not.This method is applicable to nearly all kinds of soluble organic compounds and opens an efficient and universal way to fabricate gel materials.
文摘A novel nanomagnetic organogel was synthesized by in situ emulsion polymerization-crosslinking method using dodecyl methacrylate(DDMA) and styrene(St) as monomers, divinylbenzene(DVB) as a crosslinking agent, azobisisobutyronitrile(AIBN) as an initiator, and Fe_3O_4 as a nanomagnetic particle. Modification of the network was carried out by inclusion of the multi-walled carbon nanotubes(MWCNT) into the organogel matrix. The structure of the nanocomposite was characterized using FTIR spectroscopy, SEM,TEM, TGA/DTG, VSM, and BET analysis. The effects of various parameters such as the amount of crosslinker, initiator, Fe_3O_4, and reaction time as well as monomer ratio on the oil absorption of the organogel were studied. The synthesized organogel can absorb about35.5, 22.1, 29.86, 14.58, 17.6, 15.3, and 13.7 g·g^(-1) of CHCl_3, toluene, CH_2Cl_2, hexane, crude oil, gasoline, and diesel oil, under the optimized polymerization conditions, respectively. The nanocomposite organogels can be easily separated by a magnetic field after absorption of organic solvents.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20190688)the Natural Science Foundation of Jiangsu Higher Education Institutions(21KJB430039)Taishan Scholar Construction Special Fund of Shandong Province。
文摘Smart flexible electronics with underwater motion detection have become a promising research aspect in intelligent perception.Inspired by the strong adaptability of marine creatures to complex underwater environments,conventional biocompatible hydrogels are worth developing into organogels with preferred underwater adhesive properties,hydrophobic and antiswelling performance,and motion perception ability.Herein,a highly sensitive organogel sensor exhibiting good hydrophobicity,electromechanical properties,and adhesion properties was prepared for underwater utilization by regulating the chemical components and internal interactions.The synergistic effect of massive reversible noncovalent bonds ensures the organogel’s excellent underwater adhesion to multifarious substrates.Meanwhile,the interactions of hydrophobic conductive fillers and the dynamic hydrophobic associations in the organogel endow it with satisfactory hydrophobic performance(contact angle of111.8°)and antiswelling property(equilibrium swelling ratio of-31%after 15-day immersion).The fabricated flexible organogel strain sensor exhibits high sensitivity(gauge factor of1.96),ultrafast response rate(79.1 ms),low limit of detection(0.45 Pa),and excellent cyclic stability(1044 tensile cycles followed by 3981 compressive cycles).Results demonstrate the proposed organogel’s precise perception of sophisticated human motions in air and underwater,which expands its application scenarios.
文摘Four 2,5-dialkoxylphenyl-l,3,4-oxadiazoles are shown to be efficient organogelators. These com- pounds readily form stable gels in many organic solvents and their gelation property as well as supramolecular structures were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), 1H nuclear magnetic resonance (1H NMR), and ultraviolet-visible spectroscopy (UV-vis). The results indicate that the gelator molecules self-assemble into gels with elongated fibrous networks and layer structures, and van der Waals interaction is the main driving force.
基金supported by the Science and Technology Innovation Commission of Shenzhen,China(Nos.KQJSCX20180328095517269 and JCYJ20170818143131729)。
文摘Fluorescent supramolecular nucleoside-based organogels or hydrogels have attracted increasing attention owing to their tunable stability,drug delivery,tissue engineering,and inherent biocompatibility for applications in designing sensors.As the temperature of a constant TPE-Octa-dU gelato r at MGC as low as 0.2 wt%was increased with gel to sol transition,a progressive decrease in the fluorescence intensity was observed.~1 H NMR study in ethanol-d_(6)/H_(2)O revealed the existence of intermolecular hydrogen-bond interaction between uridine nucleobase and triazole moieties.Based on these experiments,thus organogels induced by hydrogen bonding can promote an aggregation-induced emission(AIE)of TPE moiety.Thermoreversible gelation properties have been investigated systematically,including AIE-shapemorphing architecture owing to their unique solid-liquid interface and easy processability.At the same line,the related TPE-EdU derivative which was synthesized from 5-ethynyl-2'-deoxyuridine does not delive r organogels or hydrogels,a nd under similar circumstances TPE moiety of TPE-EdU does not efficiently exhibit AIE phenomenon either.
基金supported by the Natural Science Foundation of China(52073295)Ningbo Science and Technology Bureau(2021Z127)+4 种基金Ningbo Public Welfare Science and Technology Plan Project(2021S150)The Sino-German Mobility Program(M-0424)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDB-SSW-SLH036)Bureau of International Cooperation,Chinese Academy of Sciences(174433KYSB20170061)K.C.Wong Education Foundation(GJTD-2019-13).
文摘Atmospheric moisture exploitation is emerging as a promising alternative to relieve the shortage of freshwater and energy.Efforts to exploit hygroscopic materials featuring flexibility,programmability,and accessibility are crucial to portable and adaptable devices.However,current two-dimensional(2D)or three-dimensional(3D)-based hygroscopic materials are dif-ficult to adapt to diverse irregular surfaces and meet breathability,which severely hinders their wide applications in wearable and programmable devices.Herein,hygroscopic organogel fibers(HOGFs)were designed via a wet-spinning strategy.The achieved fibers were composed of the hydrophilic polymeric network,hygroscopic solvent,and photothermal/antibacterial Ag nanoparticles(AgNPs),enabling hygroscopic capacity,photothermal conversion,and antibacterial.Owing to the good knittable feature,the HOGFs can be readily woven to adjusted 2D textiles to function as an efficient self-sustained solar evaporator of 4-layer woven HOGF device with a saturated moisture capacity of 1.63 kg m^(-2) and water-releasing rate of 1.46 kg m^(-2) h^(-1).Furthermore,the 2D textile can be applied as a wearable dehumidification device to efficiently remove the evaporative moisture from human skin to maintain a comfortable environment.It can reduce the humidity from 90 to 33.4%within 12.5 min.In addition,the introduction of AgNPs can also endow the HOGFs with antibacterial features,demonstrat-ing significant potential in personal healthcare.
基金The financial support from the National Natural Science Foundation of China(Nos.20574041 and 20874055)Hi-tech Research and Development Program(863 plan)of China(No.SQ2009AA06XK1482459)
文摘A new method to fabricate metal/conducting polymer composite nanowires is presented by taking silver/polypyrrole composite nanowires as an example. A silver (D-coordinated organogel as template was prepared firstly, and redox-polymerization of pyrrole took place on the gel fiber, giving product of silver/polypyrrole nanowires. The silver/polypyrrole nanowires were characterized by multiple techniques. This strategy could be carried out in one-step procedure at room temperature, and it proves the utility of coordinated organogels in template synthesis of polymer nanostructures.
基金Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, India, for financial support (Project: 02(0271)/16/EMR-II dated 02.12.2016)
文摘In this work, we investigated the effect of hydrophobic interactions between the polymeric backbone and chain-end groups on the self-assembly pathway of stearoyl appended side-chain valine(Val)-based poly(methacrylate/acrylate) homopolymers in different organic hydrocarbons. Gelation studies conducted revealed that while polymers with polyacrylate as backbone induces gelation in several organic hydrocarbons, polymers with polymethacrylate in the main-chain significantly hinders macroscopic gelation. Morphology of the organogels was analysed by field emission scanning electron microscopy(FESEM), and mechanical strengths of the organogels were determined by rheological measurements. Reversible addition-fragmentation chain transfer(RAFT) polymerization chain transfer agents(CTA)s, [R1―S―C=(S)―S―R2] with different ―R1 and ―R2 groups, have been employed to study the effect of structural variation at the chain-end on macroscopic assembly mechanism. We found that the additional interactions between terminal groups via hydrogenbonding or π-π stacking interactions or both help to build up the self-assembly pathway and thereby produces mechanically stable organogels.
文摘Skin aging is an unavoidable aspect of human life.Premature skin aging can result from poor care,environmental pollutants,and ultraviolet radiation exposure.Wrinkles,lines,spots,uneven skin tone,and pigmentation are often indicators of skin aging.One cannot avoid aging but cosmetics and pharmaceutical approaches can minimize and delay the damage.Topical applications of biocompatible and biodegradable vehicles have been explored for delivering anti-aging compounds.Lecithin organogel(LO)is an effective vehicle for topical delivery of many bioactive agents used in aging treatment.Lecithin is cell component isolated from soya beans or eggs and purified to show excellent gelation in non-polar solvents when combined with water.LO can form a heat-stable,resistant to microbial growth,visco-elastic,optically transparent,and non-birefringent micellar system.It serves as an organic medium to enhance dermal permeation of poorly permeable drugs by effectively partitioning into the skin.Its ability to dissolve in hydrophilic as well as in lipophilic drugs makes it a dynamic vehicle,which can be explored as a carrier for anti-aging agents.
基金supported by the National Natural Science Foundation of China (50773027 and 50733002)the National Basic Research Development Program (2009CB939700)111 Project (B06009)
文摘A series of cholesterol-appended quinacridone (QA) derivatives 1a-1d have been synthesized,in which 1b and 1c could form stable organogels in a wide range of organic solvents upon ultrasound irradiation.Field emission scanning electronic microscope (FESEM) and transmission electron microscopy (TEM) of xerogels or precipitates indicated that 1b and 1c formed 1D fibrous nanostructure,while 1a assembled into 3D flower-like microstructures.The ultrasound-induced organogel process was characterized by kinetic UV-vis and photoluminescence spectroscopic methods suggesting the formation of ?-? aggregates in the gel state.Experimental results demonstrated that the ultrasound could promote molecules to contact frequently in the solution and induce semistable initial aggregates,which propagate to form nano/micro superstructures.The aggregation model was optimized by semiempirical AM1 calculation suggesting the hierarchical self-assembly process.In addition,the formed xerogel film exhibited mechanochromic property,and the phase transition process was accompanied by the fluorescence changes between yellowish green and orange.
基金supported by the National Natural Science Foundation of China (Nos.21272054,21072043,20772022)the Natural Science Foundation of Hebei Province (B2010000362,B2007000242)+1 种基金the Key Project of Chinese Ministry of Education (No207012)SRF for ROCS,SEM and Scientific Re-search Foundation for the Returned Overseas Chinese Scholars,Hebei Province.
文摘A new organogelator based on Schiff base derivative has been designed and synthesized.It can be employed as building blocks to fabricate organic nano-or micro-structures.It shows excellent self-assembling properties.It could form stable gels with nanofiber structures in various organic solvents,such as n-butanol,benzyl alcohol,ethyl acetate,acetone,aniline.The gelation properties,structural characteristics and fluorescence of the gels were studied.Compared with the solution,the gel showed significantly enhanced emission.This organogel system can be used as a thermally driven fluorescence molecular switch.
基金State Key Program of National Natural Science Foundation of China,Grant/Award Number:52130303National Natural Science Foundation of China,Grant/Award Numbers:51803151,51973152,51973151。
文摘The development of functional flexible conductive materials can significantly contribute to the improvement of intelligent human–computer integration.However,it is a challenge to endow human–machine interface with perception and response actuation simultaneously.Herein,a customizable and multifunctional electronic conductive organogel is proposed by combining conductive carbon nanotube(CNT)clusters and flexible adhesive organogels.The conductive CNT cluster layers generated on the surface of organogels equip the resulting organogel-based conductors with considerable quasi-superhydrophobicity and increase their potential applicability as highly sensitive stress and strain sensors.In particular,this quasi-superhydrophobicity is insensitive to tensile strain.Based on customizable conductive networks and entropy-driven organogel actuation,the conductive organogels can sense various strain and stress signals and imitate natural organisms with muscle actuation and neurofeedback.This strategy for preparing electronic conductors can enhance the rational design of soft robotics and artificial intelligence devices,facilitating further progress of human-like intelligent systems.
基金financially supported by the National Natural Science Foundation of China(Nos.21302090,21572097)South University of Science and Technology of Chinathe Shenzhen special funds for the development of biomedicine,internet,new energy,and new material industries(No. JCYJ20150331101823694)
文摘A phase-selective,bis-urea organogelator with a curved bis-naphthalene core was synthesized and characterized.This gelator is capable of gelating a variety of hydrocarbons and oils.The resulting gels have been characterized by rheology,SEM,and molecular modelling.The gelator can be applied in the powder form for the recovery of a thin layer of petrol oil spill in water.
基金Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cjoc.201700388 or from the author.Acknowledgement This work was supported by the Natural Science Foundation of Jilin Province (20170101112JC) and Project 985-Automotive Engineering of Jilin University.
文摘A new simple pyrene-substituted acylhydrazone derivative, 4-(3,4-dioctyloxy) phenyl-l-pyrene acylhydrazone (PAH-8), was designed and synthesized. The PAH-8 can form thermo-reversible organogel in DMSO, and shows gelation-induced enhanced fluorescence emission. Xerogel exhibits ribbon-like fibrous aggregates with widths of 0.5- 1 μm. The PAH-8 organogel indicates photo-responsive behaviors due to the trans-cis isomerizations of-C = N- bond upon exposure to visible or UV light. Upon visible light irradiation, the partial trans-cis isomerization of the -C=N- bond causes the fiber morphology to disappear, resulting in gel-sol transition, whereas the PAH-8 organogel exhibits few photoisomerizations from trans to cis transition without breakage of the gel state upon UV light irradiation.
基金Supported by the National Natural Science Foundation of China(Nos.21072076, 51103057, 51073071) and the Natural Science Foundation of Jilin Province, China(No.201215009).
文摘In order to get direct evidence for the effect of intermolecular hydrogen bonding on the organogels, one arnide group in N-(3, 4, 5-octyloxybenzoyl)-N'-(4'-aminobenzoyl)hydrazine(D8) was replaced by a Schiff base group, forming N-(3,4,5-octyloxybenzoyl)-N'-(4'-amidobenzoyl) acylhydrazone(T8SchA). D8 and T8SchA organogels in cyclohexane show the same hexagonal columnar structure. And the hydrogen bonding was demonstrated to be still interacting in the organogels. However, although the molecular geometry of D8 was well retained in T8SchA, the molecular dipole moment of T8SchA is bigger than that of D8 due to the reduction of the number of hydrogen bonds. Thus, the decreased gelling stability of T8SchA compared to that of D8 can only be attributed to the reduction of the number of intermolecular hydrogen bonds, which provides direct evidence that intermolecular hydrogen bonding plays an important role in stabilising organogels.