This case presents an unusual transposition of an impacted canine on the central incisor that provides a multidisciplinary approach to its resolution. The patient comes to the consultation for mobility of the central ...This case presents an unusual transposition of an impacted canine on the central incisor that provides a multidisciplinary approach to its resolution. The patient comes to the consultation for mobility of the central incisor. Clinically, tooth mobility was confirmed with tooth crowding and persistence of the temporary canine. Cone beam tomography (CBCT) observed the atypical position of the permanent canine that caused root resorption of the ipsilateral central incisor and the need to extract both teeth. The conservative treatment of the bone structures during the dental enucleation of the impacted canine carried out by odontosection and the immediate bone grafting of the defect projected an acceptable regeneration of the bone volume for the insertion of the implant. The orthodontic treatment managed to correct the bite, position the upper premolar in the place of the canine tooth and maintain the space to place the implant in the central incisor. The three-year follow-up shows maintenance of the peri-implant crestal bone level, the success of orthodontic treatment with recovery of the patient’s function and aesthetics.展开更多
This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While p...This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.展开更多
文摘This case presents an unusual transposition of an impacted canine on the central incisor that provides a multidisciplinary approach to its resolution. The patient comes to the consultation for mobility of the central incisor. Clinically, tooth mobility was confirmed with tooth crowding and persistence of the temporary canine. Cone beam tomography (CBCT) observed the atypical position of the permanent canine that caused root resorption of the ipsilateral central incisor and the need to extract both teeth. The conservative treatment of the bone structures during the dental enucleation of the impacted canine carried out by odontosection and the immediate bone grafting of the defect projected an acceptable regeneration of the bone volume for the insertion of the implant. The orthodontic treatment managed to correct the bite, position the upper premolar in the place of the canine tooth and maintain the space to place the implant in the central incisor. The three-year follow-up shows maintenance of the peri-implant crestal bone level, the success of orthodontic treatment with recovery of the patient’s function and aesthetics.
文摘This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.