传统的信号检测算法基于奈奎斯特采样定理来实现,这对于带宽极宽的超宽带(ultra-wideband,UWB)信号而言由于要求采样速率过高而很难用硬件去实现。为此,本文研究了基于压缩感知(compressive sensing,CS)的脉冲超宽带(impulse radio UWB,...传统的信号检测算法基于奈奎斯特采样定理来实现,这对于带宽极宽的超宽带(ultra-wideband,UWB)信号而言由于要求采样速率过高而很难用硬件去实现。为此,本文研究了基于压缩感知(compressive sensing,CS)的脉冲超宽带(impulse radio UWB,IR-UWB)信号检测问题,利用IR-UWB信号在时域上的稀疏特性,设计了一种基于压缩感知的IR-UWB信号检测框架,在此基础上提出了一种自适应加权正交匹配追踪检测算法。仿真结果表明,新算法不仅能够通过远少于奈奎斯特定理所要求的采样速率检测出IR-UWB信号,而且与基于匹配追踪的压缩感知检测算法相比,新算法在低信噪比的情况下对IR-UWB信号的检测效果更佳。展开更多
文摘传统的信号检测算法基于奈奎斯特采样定理来实现,这对于带宽极宽的超宽带(ultra-wideband,UWB)信号而言由于要求采样速率过高而很难用硬件去实现。为此,本文研究了基于压缩感知(compressive sensing,CS)的脉冲超宽带(impulse radio UWB,IR-UWB)信号检测问题,利用IR-UWB信号在时域上的稀疏特性,设计了一种基于压缩感知的IR-UWB信号检测框架,在此基础上提出了一种自适应加权正交匹配追踪检测算法。仿真结果表明,新算法不仅能够通过远少于奈奎斯特定理所要求的采样速率检测出IR-UWB信号,而且与基于匹配追踪的压缩感知检测算法相比,新算法在低信噪比的情况下对IR-UWB信号的检测效果更佳。