Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
[Objectives]To optimize the water extraction process of Fagopyri Dibotryis Rhizoma.[Methods]The entropy weight method was used to determine the weight of epicatechin extraction rate and dry extract rate and calculate ...[Objectives]To optimize the water extraction process of Fagopyri Dibotryis Rhizoma.[Methods]The entropy weight method was used to determine the weight of epicatechin extraction rate and dry extract rate and calculate the comprehensive score.The water extraction process of Fagopyri Dibotryis Rhizoma was optimized by orthogonal design with the comprehensive score as the indicator and the amount of water,extraction time and extraction times as the factors.[Results]The optimum extraction process of Fagopyri Dibotryis Rhizoma was as follows:adding 10 times of water,extracting 3 times,and extracting for 60 min each time.[Conclusions]The optimized extraction process is stable and feasible,and can be used for the extraction of Fagopyri Dibotryis Rhizoma.展开更多
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat...In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.展开更多
To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experimen...To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.展开更多
In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm ineq...In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally pola...Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump–probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels,inducing Rabi oscillations. The resulting dynamically enhanced Autler–Townes(AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies.展开更多
Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w...Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.展开更多
Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD em...Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.展开更多
Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characterist...Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.展开更多
When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navig...When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%.展开更多
The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible ligh...The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.展开更多
In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding proce...In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.展开更多
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ...This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.展开更多
Physical chemistry experiments are an important branch of chemical experiments.In view of problems and shortcomings in physical chemistry experiment teaching of food quality and safety major in Chengdu University,the ...Physical chemistry experiments are an important branch of chemical experiments.In view of problems and shortcomings in physical chemistry experiment teaching of food quality and safety major in Chengdu University,the teaching methods of physical chemistry experiment course of food quality and safety major were explored and practiced,aiming to arouse students enthusiasm for experiments and cultivate their ability of independent learning,comprehensive thinking and independent problem solving.展开更多
Background:Primary biliary cholangitis(PBC)is a chronic biliary autoimmune liver disease characterized by intrahepatic cholestasis.Swertia mussotii Franch.(SMF)is a Tibetan medicine with hepatoprotective and anti-infl...Background:Primary biliary cholangitis(PBC)is a chronic biliary autoimmune liver disease characterized by intrahepatic cholestasis.Swertia mussotii Franch.(SMF)is a Tibetan medicine with hepatoprotective and anti-inflammatory activities.In this study,the therapeutic effect and potential mechanisms of SMF on PBC were investigated by bioinformatics analysis and in vitro experimental validation,with the aim of promoting the progress of SMF and PBC research.Methods:We first explored the therapeutic effects and key targets of SMF on PBC using a network pharmacology approach,further screened the core targets using the GSE79850 dataset,and finally validated the results using molecular docking techniques and in vitro experiments.Results:By bioinformatics analysis,we identified core targets of SMF for PBC treatment(STAT3,JAK2,TNF-α,and IL-1β)and important signaling pathways:JAK-STAT,TNF,and PI3K-AKT.The molecular docking results showed that the significant components of SMF had good binding properties to the core targets.In vitro experiments showed that SMF extracts improved the extent of epithelial-mesenchymal transition in human intrahepatic biliary epithelial cells and had a significant reversal effect on epithelial-mesenchymal transition process markers and potential targets in PBC.Conclusion:SMF may exert its therapeutic effects on PBC by acting on important targets such as STAT3,JAK2,TNF-α,IL-1β,Vimentin,and E-cadherin and the pathways in which they are involved.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of lipos...Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of liposomes were selected by orthogonal design as evaluating indicators. Through three statistical methods (direct observation, variance analysis and stepwise multiple regression), the optimized preparing conditions were acquired and validated by experiment. Results All of the four indicators were different by these analyses. The validation experiments indicated that the optimized conditions by stepwise multiple regressions were better than that by traditional analysis. Conclusion Experiment results suggested that multiple regressions could avoid the weakness of direct observation and variance analysis, but more work should be done in preparing liposomes.展开更多
Biological aerated filters have many advantages such as small volume and high treatment efficiency. This research focused on sewage treatment performance of integrated biological aerated filter (IBAF) under different ...Biological aerated filters have many advantages such as small volume and high treatment efficiency. This research focused on sewage treatment performance of integrated biological aerated filter (IBAF) under different conditions such as aeration, hydraulic retention time and the height of fillers layer, to identify the turn of marked affecting factor of removal performance through orthogonal experiments, optimize the function parameter of IBAF, reveal the regularity of sewage treatment of IBAF under different conditions, and adopt suitable measures to guarantee excess water quality of IBAF.展开更多
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
文摘[Objectives]To optimize the water extraction process of Fagopyri Dibotryis Rhizoma.[Methods]The entropy weight method was used to determine the weight of epicatechin extraction rate and dry extract rate and calculate the comprehensive score.The water extraction process of Fagopyri Dibotryis Rhizoma was optimized by orthogonal design with the comprehensive score as the indicator and the amount of water,extraction time and extraction times as the factors.[Results]The optimum extraction process of Fagopyri Dibotryis Rhizoma was as follows:adding 10 times of water,extracting 3 times,and extracting for 60 min each time.[Conclusions]The optimized extraction process is stable and feasible,and can be used for the extraction of Fagopyri Dibotryis Rhizoma.
文摘In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs.
基金Projects(U23B2093,52274245)supported by the National Natural Science Foundation of ChinaProject(KFJJ22-15M)supported by the Opening Project of State Key Laboratory of Explosion Science and Technology,China。
文摘To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.
文摘In this paper,some refinements of norm equalities and inequalities of combination of two orthogonal projections are established.We use certain norm inequalities for positive contraction operator to establish norm inequalities for combination of orthogonal projections on a Hilbert space.Furthermore,we give necessary and sufficient conditions under which the norm of the above combination of o`rthogonal projections attains its optimal value.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074265,12234002,and 92250303)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010329)。
文摘Based on numerical solutions of the time-dependent Schr ¨odinger equation, we theoretically investigate the photoelectron spectrum of hydrogen atoms ionized by a pair of ultrashort, intense, and orthogonally polarized laser pulses with a relative time delay in a pump–probe configuration. The pump pulse resonantly excites electrons from the 1s and 2p levels,inducing Rabi oscillations. The resulting dynamically enhanced Autler–Townes(AT) splitting is observed in the photoelectron energy spectrum upon interaction with the second probe pulse. In contrast to the previous parallel-polarization scheme, the proposed orthogonal-polarization configuration enables the resolution of dynamically enhanced AT splitting over a considerably wider range of probe photon energies.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12034008,12250003, and 11727810)the Program of Introducing Talents of Discipline to Universities 111 Project (B12024)。
文摘Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFA0604100,2016YFC1402004,2017YFC1404200)the Program for Innovation Research and Entrepreneurship Team in Jiangsu Provincethe National Natural Science Foundation of China(Nos.41476022,41490643)。
文摘Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090202)the Key Science and Technology Projects of Transportation Industry(Grant No.2021-MS4-104)the National Key Research and Development Program of China(Grant No.2019YFC1509900).
文摘Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.
基金supported by the National Natural Science Foundation of China(52174154).
文摘When the amphibious vehicle navigates in water,the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics.In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate,there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods,and the influence of the center of gravity position on navigation characteristics is not considered at the same time.To study the influence of the combinations of the angle of the anti-wave plate and the position of the center of gravity on the resistance reduction characteristics,a numerical calculation model of the amphibious unmanned vehicle was established by using the theory of computational fluid dynamics,and the experimental data verified the correctness of the numerical model.Based on this numerical model,the navigation characteristics of the amphibious unmanned vehicle were studied when the center of gravity was located at different positions,and the orthogonal experimental design method was used to optimize the parameters of the angle of the anti-wave plate and the position of the center of gravity.The results show that through the parameter optimization analysis based on the orthogonal experimental method,the combination of the optimal angle of the anti-wave plate and the position of the center of gravity is obtained.And the numerical simulation result of resistance is consistent with the predicted optimal solution.Compared with the maximum navigational resistance,the parameter optimization reduces the navigational resistance of the amphibious unmanned vehicle by 24%.
文摘The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.
基金supported by Major Special Projects of Science and Technology in Fujian Province,(Grant No.2020HZ03018)Natural Science Foundation of Fujian Province(Grant No.2020J01873).
文摘In gas metal arc welding(GMAW)process,the short-circuit transition was the most typical transition observed in molten metal droplets.This paper used orthogonal tests to explore the coupling effect law of welding process parameters on the quality of weld forming under short-circuit transition,the design of 3 factors and 3 levels of a total of 9 groups of orthogonal tests,welding current,welding voltage,welding speed as input parameters:effective area ratio,humps,actual linear power density,aspect ratio,Vickers hardness as output paramet-ers(response targets).Using range analysis and trend charts,we can visually depict the relationship between input parameters and a single output parameter,ultimately determining the optimal process parameters that impact the single output index.Then combined with gray the-ory to transform the three response targets into a single gray relational grade(GRG)for analysis,the optimal combination of the weld mor-phology parameters as follows:welding current 100 A,welding voltage 25 V,welding speed 30 cm/min.Finally,validation experiments were conducted,and the results showed that the error between the gray relational grade and the predicted value was 2.74%.It was observed that the effective area ratio of the response target significantly improved,validating the reliability of the orthogonal gray relational method.
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
文摘This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
文摘Physical chemistry experiments are an important branch of chemical experiments.In view of problems and shortcomings in physical chemistry experiment teaching of food quality and safety major in Chengdu University,the teaching methods of physical chemistry experiment course of food quality and safety major were explored and practiced,aiming to arouse students enthusiasm for experiments and cultivate their ability of independent learning,comprehensive thinking and independent problem solving.
基金supported by the Key project of Chinese Academy of Sciences(Grant No.ZDRW-ZS-2020-2)Innovation Platform Program of Qinghai Province(2021-ZJ-T02),Key Laboratory Project of Qinghai Province(2022-ZJ-Y05)+1 种基金the Natural Science Foundation of China(Grant No.82171863)China Postdoctoral Science Foundation funded project(2021M701642).
文摘Background:Primary biliary cholangitis(PBC)is a chronic biliary autoimmune liver disease characterized by intrahepatic cholestasis.Swertia mussotii Franch.(SMF)is a Tibetan medicine with hepatoprotective and anti-inflammatory activities.In this study,the therapeutic effect and potential mechanisms of SMF on PBC were investigated by bioinformatics analysis and in vitro experimental validation,with the aim of promoting the progress of SMF and PBC research.Methods:We first explored the therapeutic effects and key targets of SMF on PBC using a network pharmacology approach,further screened the core targets using the GSE79850 dataset,and finally validated the results using molecular docking techniques and in vitro experiments.Results:By bioinformatics analysis,we identified core targets of SMF for PBC treatment(STAT3,JAK2,TNF-α,and IL-1β)and important signaling pathways:JAK-STAT,TNF,and PI3K-AKT.The molecular docking results showed that the significant components of SMF had good binding properties to the core targets.In vitro experiments showed that SMF extracts improved the extent of epithelial-mesenchymal transition in human intrahepatic biliary epithelial cells and had a significant reversal effect on epithelial-mesenchymal transition process markers and potential targets in PBC.Conclusion:SMF may exert its therapeutic effects on PBC by acting on important targets such as STAT3,JAK2,TNF-α,IL-1β,Vimentin,and E-cadherin and the pathways in which they are involved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
文摘Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of liposomes were selected by orthogonal design as evaluating indicators. Through three statistical methods (direct observation, variance analysis and stepwise multiple regression), the optimized preparing conditions were acquired and validated by experiment. Results All of the four indicators were different by these analyses. The validation experiments indicated that the optimized conditions by stepwise multiple regressions were better than that by traditional analysis. Conclusion Experiment results suggested that multiple regressions could avoid the weakness of direct observation and variance analysis, but more work should be done in preparing liposomes.
文摘Biological aerated filters have many advantages such as small volume and high treatment efficiency. This research focused on sewage treatment performance of integrated biological aerated filter (IBAF) under different conditions such as aeration, hydraulic retention time and the height of fillers layer, to identify the turn of marked affecting factor of removal performance through orthogonal experiments, optimize the function parameter of IBAF, reveal the regularity of sewage treatment of IBAF under different conditions, and adopt suitable measures to guarantee excess water quality of IBAF.