To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox,...To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.展开更多
Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed ...Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.展开更多
Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchroniz...Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchronization. In this paper, an algorithm based on MMSE (minimum mean square error) is developed to compensate the influence of both the common phase error (CPE) and inter carrier interference (ICI), which are two aspects of phase noise, under common Gaussian white noise. The result of noise cancellation is presented in signal-to-noise ratio (SNR) and symbol error rate (SER). Like digital signal in general, SNR can reduce SER with or without phase noise compensation. The compensation of phase noise significantly reduces the SER of the decoded signal. However, the bandwidth of phase noise still determines the signal accuracy. Under high bandwidth of phase noise, increasing SNR will only slightly increase SER, which is not efficient.展开更多
Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inhe...Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .展开更多
Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR r...Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR reduction method for Wireless-MAN(metropolitan area network)-OFDM system based on IEEE 802.16, which is over-sampling clipping arithmetic. Simulation and performance of the over-samples clipping's PAPR reduction capability, BER effect is given. The simulation indicates that the PAPR of at least 99.9% OFDM symbol is below 6dB after 2 Nyquist rate clipping, and the performance of BER has 1dB SNR(signal noise ratio) loss. The results prove that this method has better capacity to reducing PAPR. So it can be well used in WMAN-OFDM system.展开更多
This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduc...This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.展开更多
The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by th...The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by these advantages of OSFBC-OFDM system, this paper considers a secure wireless multicasting scenario through multiple-input multiple-output (MIMO) OFDM system employing OSFBC over frequency selective α-μ fading channels. The authors are interested to protect the desired signals from eavesdropping considering the impact of the number of multicast users and eavesdroppers, and the fading parameters α and μ. A mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multi-casting (SOPM) to ensure the security in the presence of multiple eaves-droppers. The results show that the security in MIMO OSFBC OFDM system over α-μ fading is more sensitive to the magnitude of α and μ and this effect increases in the high signal-to-noise ratio (SNR) region of the main channel.展开更多
In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms...In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.展开更多
The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and t...The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.展开更多
Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window,...Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.展开更多
The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (M...The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.展开更多
In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages....In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.展开更多
Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describ...Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describes an iterative blind receiver consisting of a sequential Monte Carlo detector, a CFO estimator, and a compensator to reduce intercarrier interference. The framework is of low complexity due to the separation of tasks in a joint detection problem. In addition, the CFO estimator utilizes soft output of the sequential Monte Carlo detector, which reduces the information loss caused by hard decisions and can obtain the CFO estimate in only one OFDM symbol. Simulation results demonstrate the effectiveness of the algorithm.展开更多
This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach s...This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.展开更多
A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless com...A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.展开更多
文摘To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.
文摘Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.
文摘Orthogonal Frequency Division Multiplexing (OFDM) is characterized by its high data rate. However, the modulation method used in the system is subject to the influence of phase noise due to the need of time synchronization. In this paper, an algorithm based on MMSE (minimum mean square error) is developed to compensate the influence of both the common phase error (CPE) and inter carrier interference (ICI), which are two aspects of phase noise, under common Gaussian white noise. The result of noise cancellation is presented in signal-to-noise ratio (SNR) and symbol error rate (SER). Like digital signal in general, SNR can reduce SER with or without phase noise compensation. The compensation of phase noise significantly reduces the SER of the decoded signal. However, the bandwidth of phase noise still determines the signal accuracy. Under high bandwidth of phase noise, increasing SNR will only slightly increase SER, which is not efficient.
文摘Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .
基金Supported by the Communication Department ofGeneral Staff (Project 916)
文摘Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR reduction method for Wireless-MAN(metropolitan area network)-OFDM system based on IEEE 802.16, which is over-sampling clipping arithmetic. Simulation and performance of the over-samples clipping's PAPR reduction capability, BER effect is given. The simulation indicates that the PAPR of at least 99.9% OFDM symbol is below 6dB after 2 Nyquist rate clipping, and the performance of BER has 1dB SNR(signal noise ratio) loss. The results prove that this method has better capacity to reducing PAPR. So it can be well used in WMAN-OFDM system.
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA01A345)the National Basic Research Program of China(Grant No.2011CB302702)the National Natural Science Foundation of China(Grant No.60932004)
文摘This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.
文摘The orthogonal space-frequency block coding (OSFBC) with orthogonal frequency division multiplexing (OFDM) system reduces complexity in the receiver which improves the system performance significantly. Motivated by these advantages of OSFBC-OFDM system, this paper considers a secure wireless multicasting scenario through multiple-input multiple-output (MIMO) OFDM system employing OSFBC over frequency selective α-μ fading channels. The authors are interested to protect the desired signals from eavesdropping considering the impact of the number of multicast users and eavesdroppers, and the fading parameters α and μ. A mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multi-casting (SOPM) to ensure the security in the presence of multiple eaves-droppers. The results show that the security in MIMO OSFBC OFDM system over α-μ fading is more sensitive to the magnitude of α and μ and this effect increases in the high signal-to-noise ratio (SNR) region of the main channel.
基金Guangdong Province Science and Technology Guiding Project(2005B10101013)
文摘In this paper,analyzed is the symbol synchronization algorithm in orthogonal frequency division multiplex(OFDM)system,and accomplished are the hardware circuit design of coarse and elaborate synchronization algorithms.Based on the analysis of coarse and elaborate synchronization algorithms,multiplexed are,the module accumulator,division and output judgement,which can evidently save the hardware resource cost.The analysis of circuit sequence and wave form simulation of the design scheme shows that the proposed method efficiently reduce system resources and power consumption.
基金Supported by the National High Technology Research and Development Program of China (2009AA093601-2)the National Defense Foundation Research (B2420110007)
文摘The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.
基金supported by the National Natural Science Foundation of China(6130110561102069)+2 种基金the China Postdoctoral Science Foundation Funded Project(2013M531351)the Nanjing University of Aeronautics and Astronautics Founding(NN2012022)the Open Fund of Graduate Innovated Base(Laboratory)for the Nanjing University of Aeronautics and Astronautics(KFJJ120219)
文摘Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.
基金supported by the National Natural Science Foundation of China(6137116961301108+1 种基金61071164)the Fundamental Research Funds for the Central Universities(NS2013024)
文摘The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.
基金Project(60532030) supported by the National Natural Science Foundation of China
文摘In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.
基金Supported by the Basic Research Foundation of Tsinghua Na-tional Laboratory for Information Science and Technology (TNList) the Major Program of the National Natural Science Foundation of China (No. 60496311)
文摘Orthogonal frequency-division multiplexing (OFDM) systems are sensitive to carrier frequency offset (CFO) which introduces intercarder interference and significantly degrades system performance. This paper describes an iterative blind receiver consisting of a sequential Monte Carlo detector, a CFO estimator, and a compensator to reduce intercarrier interference. The framework is of low complexity due to the separation of tasks in a joint detection problem. In addition, the CFO estimator utilizes soft output of the sequential Monte Carlo detector, which reduces the information loss caused by hard decisions and can obtain the CFO estimate in only one OFDM symbol. Simulation results demonstrate the effectiveness of the algorithm.
基金supported by the Beijing Natural Science Foundation of China (4102050)the National Natural Science of Foundation of China (NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.
基金Project supported by the National Natural Science Foundation of China (Grant No.60572157)the International Cooper-ation Foundation (Grant No.2008DFA11950)
文摘A particle filter is proposed to perform joint estimation of the carrier frequency offset (CFO) and the channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless communication systems. It marginalizes out the channel parameters from the sampling space in sequential importance sampling (SIS), and propagates them with the Kalman filter. Then the importance weights of the CFO particles are evaluated according to the imaginary part of the error between measurement and estimation. The varieties of particles are maintained by sequential importance resampling (SIR). Simulation results demonstrate this algorithm can estimate the CFO and the channel parameters with high accuracy. At the same time, some robustness is kept when the channel model has small variations.