This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduc...This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.展开更多
Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR r...Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR reduction method for Wireless-MAN(metropolitan area network)-OFDM system based on IEEE 802.16, which is over-sampling clipping arithmetic. Simulation and performance of the over-samples clipping's PAPR reduction capability, BER effect is given. The simulation indicates that the PAPR of at least 99.9% OFDM symbol is below 6dB after 2 Nyquist rate clipping, and the performance of BER has 1dB SNR(signal noise ratio) loss. The results prove that this method has better capacity to reducing PAPR. So it can be well used in WMAN-OFDM system.展开更多
Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed ...Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.展开更多
To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox,...To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.展开更多
水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪...水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪算法。首先对三频信号做线性调频Z变换(Chirp-Z Transform,CZT)得到多普勒先验值,然后利用OFDM符号中的空载波结合载波频偏(Carrier Frequency Offset,CFO)搜索补偿技术,把估计的最优CFO值转换为宽带多普勒因子,进而计算当前符号的加速度并预测下一符号的速度。通过更新加速度对预测值进行修正,实现每个OFDM符号的多普勒估计。数值仿真和湖试结果表明,文中算法不仅能有效跟踪多普勒的变化,在匀速和变速条件下都有较好的补偿性能,而且对帧结构设计要求低,对先验误差不敏感,有利于水声通信系统的工程实现。展开更多
针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高...针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高阶幅度键控调制方式,并利用信号幅度信息完成半相干信道估计。通过两种基于深度学习的算法优化半相干信道估计这一非线性过程,较非相干通信有效提高了频谱效率,较一定信噪比下的相干通信提高了鲁棒性,降低了误比特率和系统复杂度,并利用元学习算法降低深度学习算法对训练数据的依赖。最后,提取海试信道数据,完成OFDM半相干水声通信系统仿真,验证了所提方法在频谱效率和系统误比特率性能方面较非相干和相干通信的优势,当信道长度改变时,基于元学习的算法依然可以获得较好的性能。展开更多
针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频...针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。展开更多
针对脉冲噪声导致正交频分复用(orthogonal frequency division multiplexing,OFDM)水声通信系统误码率性能降低的问题,提出一种迭代脉冲噪声抑制与信道估计方法。首先,利用对称α稳定(symmetricαstable,SαS)分布对水下噪声进行建模,...针对脉冲噪声导致正交频分复用(orthogonal frequency division multiplexing,OFDM)水声通信系统误码率性能降低的问题,提出一种迭代脉冲噪声抑制与信道估计方法。首先,利用对称α稳定(symmetricαstable,SαS)分布对水下噪声进行建模,并通过实测噪声数据进行拟合验证。其次,基于脉冲噪声幅值较大的特性,利用切比雪夫不等式对基带接收信号实部和虚部分别进行脉冲噪声检测和抑制。同时,通过分析最小二乘(least squares,LS)信道估计算法估计误差的统计特性,提出自适应门限LS信道估计算法,减轻残余噪声对信道估计的影响。最后,结合估计的信道和译码结果重构噪声并进行脉冲噪声估计,实现迭代脉冲噪声抑制与信道估计。仿真结果表明,在不同程度脉冲噪声和实测噪声场景下,所提方法能够有效抑制脉冲噪声,显著降低OFDM系统误码率。展开更多
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
Power line communication(PLC)has the potential to become the preferred technique for providing broadband communication to homes and offices with advantage of eliminating the need for new wiring infrastructure and redu...Power line communication(PLC)has the potential to become the preferred technique for providing broadband communication to homes and offices with advantage of eliminating the need for new wiring infrastructure and reducing the cost.But it suffers from the impulsive noise because it introduces significant time variance into the power line channel.In this paper,a polar codes based orthogonal frequency division multiplexing(OFDM)PLC system is proposed to deal with the impulsive noise and thereby improve the transmission performance.Firstly,the impulsive noise is modelled with a multi-damped sine function by analyzing the time behavior of impulse events.Then the polar codes are used to combat the impulsive noise of PLC channel,and a low complexity bit-flipping decoding method based on CRC-aided successive cancellation list(CA-SCL)decoding algorithm is proposed.Simulations evaluate the proposed decoding algorithm and the results validate the suggested polar codes based OFDM-PLC scheme which can improve the BER performance of PLC with impulsive interference.展开更多
A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. ...A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. On the basis of the existing non-orthogonal STC, frequency diversity is studied and a new non-orthogonal STFC is further designed. Monte-Carlo simulations show that the non-orthogonal STFC-OFDM has the advantage of large diversity order, high bandwidth efficiency and better BER performance when compared with the orthogonal STC/STFC-OFDM and non-orthogonal STC-OFDM systems.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA01A345)the National Basic Research Program of China(Grant No.2011CB302702)the National Natural Science Foundation of China(Grant No.60932004)
文摘This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.
基金Supported by the Communication Department ofGeneral Staff (Project 916)
文摘Clipping is a simple and convenient PAPR (peak-to-average power ratio) reduction method for high speed OFDM (orthogonal frequency division multiplexing) communication system. In this paper, we propose a new PAPR reduction method for Wireless-MAN(metropolitan area network)-OFDM system based on IEEE 802.16, which is over-sampling clipping arithmetic. Simulation and performance of the over-samples clipping's PAPR reduction capability, BER effect is given. The simulation indicates that the PAPR of at least 99.9% OFDM symbol is below 6dB after 2 Nyquist rate clipping, and the performance of BER has 1dB SNR(signal noise ratio) loss. The results prove that this method has better capacity to reducing PAPR. So it can be well used in WMAN-OFDM system.
文摘Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.
文摘To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.
文摘水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪算法。首先对三频信号做线性调频Z变换(Chirp-Z Transform,CZT)得到多普勒先验值,然后利用OFDM符号中的空载波结合载波频偏(Carrier Frequency Offset,CFO)搜索补偿技术,把估计的最优CFO值转换为宽带多普勒因子,进而计算当前符号的加速度并预测下一符号的速度。通过更新加速度对预测值进行修正,实现每个OFDM符号的多普勒估计。数值仿真和湖试结果表明,文中算法不仅能有效跟踪多普勒的变化,在匀速和变速条件下都有较好的补偿性能,而且对帧结构设计要求低,对先验误差不敏感,有利于水声通信系统的工程实现。
文摘针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高阶幅度键控调制方式,并利用信号幅度信息完成半相干信道估计。通过两种基于深度学习的算法优化半相干信道估计这一非线性过程,较非相干通信有效提高了频谱效率,较一定信噪比下的相干通信提高了鲁棒性,降低了误比特率和系统复杂度,并利用元学习算法降低深度学习算法对训练数据的依赖。最后,提取海试信道数据,完成OFDM半相干水声通信系统仿真,验证了所提方法在频谱效率和系统误比特率性能方面较非相干和相干通信的优势,当信道长度改变时,基于元学习的算法依然可以获得较好的性能。
文摘针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。
文摘针对脉冲噪声导致正交频分复用(orthogonal frequency division multiplexing,OFDM)水声通信系统误码率性能降低的问题,提出一种迭代脉冲噪声抑制与信道估计方法。首先,利用对称α稳定(symmetricαstable,SαS)分布对水下噪声进行建模,并通过实测噪声数据进行拟合验证。其次,基于脉冲噪声幅值较大的特性,利用切比雪夫不等式对基带接收信号实部和虚部分别进行脉冲噪声检测和抑制。同时,通过分析最小二乘(least squares,LS)信道估计算法估计误差的统计特性,提出自适应门限LS信道估计算法,减轻残余噪声对信道估计的影响。最后,结合估计的信道和译码结果重构噪声并进行脉冲噪声估计,实现迭代脉冲噪声抑制与信道估计。仿真结果表明,在不同程度脉冲噪声和实测噪声场景下,所提方法能够有效抑制脉冲噪声,显著降低OFDM系统误码率。
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金Supported by Headquarters Technology Project of State Grid Corporation of China(No.5700-202118203A-0-0-00)。
文摘Power line communication(PLC)has the potential to become the preferred technique for providing broadband communication to homes and offices with advantage of eliminating the need for new wiring infrastructure and reducing the cost.But it suffers from the impulsive noise because it introduces significant time variance into the power line channel.In this paper,a polar codes based orthogonal frequency division multiplexing(OFDM)PLC system is proposed to deal with the impulsive noise and thereby improve the transmission performance.Firstly,the impulsive noise is modelled with a multi-damped sine function by analyzing the time behavior of impulse events.Then the polar codes are used to combat the impulsive noise of PLC channel,and a low complexity bit-flipping decoding method based on CRC-aided successive cancellation list(CA-SCL)decoding algorithm is proposed.Simulations evaluate the proposed decoding algorithm and the results validate the suggested polar codes based OFDM-PLC scheme which can improve the BER performance of PLC with impulsive interference.
基金National Natural Science Foundation ofChina(No.60 3 72 0 76)
文摘A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. On the basis of the existing non-orthogonal STC, frequency diversity is studied and a new non-orthogonal STFC is further designed. Monte-Carlo simulations show that the non-orthogonal STFC-OFDM has the advantage of large diversity order, high bandwidth efficiency and better BER performance when compared with the orthogonal STC/STFC-OFDM and non-orthogonal STC-OFDM systems.