A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The c...A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The completeness of the k states is investigated.An alternative method to construct them is proposed.It is shown that these states may form a complete Hilbert space,and all of them can be generated by a linear superposition of k Roy-type nonlinear coherent states.Physically,they can be generated by a linear superposition of the time-dependent Roy-type nonlinear coherent states at different instants.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.10074072the Natural Science Foundation of Shandong Province of China under Grant No.Y2002A05
文摘A new kind of k-quantum nonlinear coherent states,i.e.,the k eigenstates of the k-th power~k (k≥3) of the generalized annihilation operator=1/f() of f-oscillators,are obtained and their properties are discussed.The completeness of the k states is investigated.An alternative method to construct them is proposed.It is shown that these states may form a complete Hilbert space,and all of them can be generated by a linear superposition of k Roy-type nonlinear coherent states.Physically,they can be generated by a linear superposition of the time-dependent Roy-type nonlinear coherent states at different instants.