BACKGROUND Open reduction and internal fixation represent prevalent orthopedic procedures,sparking ongoing discourse over whether to retain or remove asymptomatic implants.Achieving consensus on this matter is paramou...BACKGROUND Open reduction and internal fixation represent prevalent orthopedic procedures,sparking ongoing discourse over whether to retain or remove asymptomatic implants.Achieving consensus on this matter is paramount for orthopedic surgeons.This study aims to quantify the impact of routine implant removal on patients and healthcare facilities.A retrospective analysis of implant removal cases from 2016 to 2022 at King Fahad Hospital of the University(KFHU)was conducted and subjected to statistical scrutiny.Among these cases,44%necessitated hospitalization exceeding one day,while 56%required only a single day.Adults exhibited a 55%need for extended hospital stays,contrasting with 22.8%among the pediatric cohort.The complication rate was 6%,with all patients experiencing at least one complication.Notably,34.1%required sick leave and 4.8%exceeded 14 d.General anesthesia was predominant(88%).Routine implant removal introduces unwarranted complications,particularly in adults,potentially prolonging hospitalization.This procedure strains hospital resources,tying up the operating room that could otherwise accommodate critical surgeries.Clearly defined institutional guidelines are imperative to regulate this practice.AIM To measure the burden of routine implant removal on the patients and hospital.METHODS This is a retrospective analysis study of 167 routine implant removal cases treated at KFHU,a tertiary hospital in Saudi Arabia.Data were collected in the orthopedic department at KFHU from February 2016 to August 2022,which includes routine asymptomatic implant removal cases across all age categories.Nonroutine indications such as infection,pain,implant failure,malunion,nonunion,restricted range of motion,and prominent hardware were excluded.Patients who had external fixators removed or joints replaced were also excluded.RESULTS Between February 2016 and August 2022,360 implants were retrieved;however,only 167 of those who met the inclusion criteria were included in this study.The remaining implants were rejected due to exclusion criteria.Among the cases,44%required more than one day in the hospital,whereas 56%required only one day.55%of adults required more than one day of hospitalization,while 22.8%of pediatric patients required more than one day of inpatient care.The complication rate was 6%,with each patient experiencing at least one complication.Sick leave was required in 34.1%of cases,with 4.8%requiring more than 14 d.The most common type of anesthesia used in the surgeries was general anesthesia(88%),and the mean(SD)surgery duration was 77.1(54.7)min.CONCLUSION Routine implant removal causes unnecessary complications,prolongs hospital stays,depletes resources and monopolizing operating rooms that could serve more critical procedures.展开更多
The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochem...The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochemical tests. The results showed that, with the addition of 1% Sn and the Ca content of 0.2%?0.5%, the microstructure of the as-extruded Mg?Sn?Ca alloys became homogenous, which led to increased mechanical properties and improved corrosion resistance. Further increase of Ca content up to 1.5% improved the strength, but deteriorated the ductility and corrosion resistance. For the alloy containing 0.5% Ca, when the Sn content increased from 1% to 3%, the ultimate tensile strength increased with a decreased corrosion resistance, and the lowest yield strength and ductility appeared with the Sn content of 2%. These behaviors were determined by Sn/Ca mass ratio. The analyses showed that as-extruded Mg?1Sn?0.5Ca alloy was promising as a biodegradable orthopedic implant.展开更多
Magnesium(Mg)and its alloys have been widely researched for orthopedic applications recently.Mg alloys have stupendous advantages over the commercially available stainless steel,Co-Cr-Ni alloy and titanium implants.Ti...Magnesium(Mg)and its alloys have been widely researched for orthopedic applications recently.Mg alloys have stupendous advantages over the commercially available stainless steel,Co-Cr-Ni alloy and titanium implants.Till date,extensive mechanical,in-vitro and in-vivo studies have been done to improve the biomedical performance of Mg alloys through alloying,processing conditions,surface modification etc.This review comprehensively describes the strategies for improving the mechanical and degradation performance of Mg alloys through properly tailoring the composition of alloying elements,reinforcements and processing techniques.It also highlights the status and progress of research in to(i)the selection of nutrient elements for alloying,reinforcement and its effects(ii)type of Mg alloy system(binary,ternary and quaternary)and composites(iii)grain refinement for strengthening through severe plastic deformation techniques.Furthermore it also emphasizes on the importance of Mg composites with regard to hard tissue applications.展开更多
The last decade has seen a significant growth in the market for alloys used for implants,especially for those intended for orthopedic implants.Research into biodegradable magnesium-based alloys has made great strides ...The last decade has seen a significant growth in the market for alloys used for implants,especially for those intended for orthopedic implants.Research into biodegradable magnesium-based alloys has made great strides in this period,so huge progress has been made in their use in the medical industry.The important factors that led to the intensification of research in this regard,were social but also economic,wanting to improve the quality of life,by reducing the use of conventionally permanent metallic implants(stainless steel,cobalt-based alloys,and titanium alloys)which involve the second implant removal surgery and other undesirable effects(stress shielding and metal ion releases),with a negative impact on the emotional and physical condition of patients,and by significantly reducing the costs for both the patient and the health system in the field of orthopedics.This paper refers to the impact and importance of biodegradable Mg alloys,reviewing the beginning of their development,the significant characteristics that make them so desirable for such applications(orthopedic implants)but also the characteristics that must be modulated(corrosion rate and mechanical properties)to arrive at the ideal product for the targeted application.It highlights,in detail,the mechanism and aspects related to the corrosion behaviour of Mg alloys,electrochemical characterization techniques/methods,as well as strategies to improve the corrosion behaviour and mechanical properties of these types of biodegradable alloys.The means of optimization,the category and the effect of the alloying elements,the design criteria,the requirements that the implants of biodegradable alloys Mg-based must meet and the aspects related to their efficiency are also presented.Finally,the potential applications in the specialized clinics,as well as the final products currently used and made by important prestigious companies in the world are approached.展开更多
Mg-Ca alloys have recently attracted great attention towards the research in the field of orthopedic biodegradable implants.This study presents an in vitro degradation assessment of Mg-0.8Ca(0.8 wt.%of Ca)alloy in Han...Mg-Ca alloys have recently attracted great attention towards the research in the field of orthopedic biodegradable implants.This study presents an in vitro degradation assessment of Mg-0.8Ca(0.8 wt.%of Ca)alloy in Hank’s balanced salt solution(HBSS).Immersion,hydrogen evolution and electrochemical behavior was studied as well as the cytotoxicity of the degradation products.Morphology and phase composition of the corrosion products were studied using SEM,EDX and XRD techniques.Degradation in HBSS resulted in the formation of the needle-shaped carbonated hydroxyapatite which was similar to the biological apatite in the human bone.Degradation kinetics showed that Mg-0.8Ca alloy had approximately 3-fold faster degradation rate than the pure Mg(1.08±0.38 mm/year for Mg-0.8Ca and 0.35±0.17 mm/year for pure Mg),as observed in two independent experiments.Both,pure Mg and Mg-0.8Ca alloy were biocompatible,generating no cytotoxic degradation products against human-derived HEK 293 cells.Thus,the Mg-0.8Ca alloy was found to be a promising biodegradable implant in terms of bioactivity and compatibility with human cell lines.Depending on the application of the implant and the estimated healing time of the bone,the desired degradation rate of an implant can be controlled by the Mg-Ca composition of such alloys.展开更多
Magnesium(Mg)has emerged as one of the third-generation biomaterials for regeneration and support of functional bone tissue.Mg is a better choice over permanent implants such as titanium,stainless steel,cobalt-chrome ...Magnesium(Mg)has emerged as one of the third-generation biomaterials for regeneration and support of functional bone tissue.Mg is a better choice over permanent implants such as titanium,stainless steel,cobalt-chrome as magnesium is biodegradable and does not require a second surgery for its removal after bone tissue recovery.It also reduces the risk of stress shielding as its elastic modulus is closer to human bone in comparison to permanent implants and other biodegradable metallic implants based on Iron and Zinc.Most importantly,Mg is osteoconductive thus stimulates new bone formation and possess anti-bacterial properties hence reducing the risk of failure due to infection.Despite its advantages,a major concern with pure Mg is its rapid bio-corrosion in presence of body fluids due to which the mechanical integrity of the implant deteriorates before healing of the tissue is complete.Mechanical properties of Mg-based implants can be enhanced by mechanical processing,alloying,and topology optimization.To reduce the corrosion/degradation rate,Mg has been alloyed with metals,reinforced with ceramics,and surface coatings have been applied so that the degradation rate of Mg-based implant matches with that of healing rate of bone tissue.The present review discusses the effect of alloying elements and reinforcing ceramics on microstructure,mechanical,and corrosion properties of Mg-based orthopedic implants.In addition,the biocompatibility of Mg-based alloys,composites,and coatings applied on Mg implants has been highlighted.Further,different methods of fabricating porous implants have been highlighted as making the implant porous facilitates the growth of new bone tissue through the pores.展开更多
Bone marrow-derived mesenchymal stem cells(BMSCs)play a critical role in the osseointegration of bone and orthopedic implant.However,osseointegration between the Ti-based implants and the surrounding bone tissue must ...Bone marrow-derived mesenchymal stem cells(BMSCs)play a critical role in the osseointegration of bone and orthopedic implant.However,osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects.Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate.Here,we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys.We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration,and discuss recent advances in understanding their role in regenerative medicine.We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.展开更多
Infection of bone tissue,or osteomyelitis,has become a growing concern in modern healthcare due in no small part to a rise in antibiotic resistance among bacteria,notably Staphylococcus aureus.The current standard of ...Infection of bone tissue,or osteomyelitis,has become a growing concern in modern healthcare due in no small part to a rise in antibiotic resistance among bacteria,notably Staphylococcus aureus.The current standard of care involves aggressive,prolonged antibiotic therapy combined with surgical debridement of infected tissues.While this treatment may be sufficient for resolving a portion of cases,recurrences of the infection and associated risks including toxicity with long-term antibiotic usage have been reported.Therefore,there exists a need to produce safer,more efficacious options of treatment for osteomyelitis.In order to test treatment regimens,animal models that closely mimic the clinical condition and allow for accurate evaluation of therapeutics are necessary.Establishing a model that replicates features of osteomyelitis in humans continues to be a challenge to scientists,as there are many variables involved,including choosing an appropriate species and method to establish infection.This review addresses the refinement of animal models of osteomyelitis to reflect the clinical disease and test prospective therapeutics.The aim of this review is to explore studies regarding the use of animals for osteomyelitis therapeutics research and encourage further development of such animal models for the translation of results from the animal experiment to human medicine.展开更多
The key to managing fracture is to achieve stable internal fixation,and currently,biologically and mechanically appropriate internal fixation devices are urgently needed.With excellent biocompatibility and corrosion r...The key to managing fracture is to achieve stable internal fixation,and currently,biologically and mechanically appropriate internal fixation devices are urgently needed.With excellent biocompatibility and corrosion resistance,titanium–niobium alloys have the potential to become a new generation of internal fixation materials for fractures.However,the role and mechanism of titanium–niobium alloys on promoting fracture healing are still undefined.Therefore,in this study,we systematically evaluated the bone-enabling properties of Ti45Nb via in vivo and in vitro experiments.In vitro,we found that Ti45Nb has an excellent ability to promote MC3T3-E1 cell adhesion and proliferation without obvious cytotoxicity.Alkaline phosphatase(ALP)activity and alizarin red staining and semiquantitative analysis showed that Ti45Nb enhanced the osteogenic differentiation of MC3T3-E1 cells compared to the Ti6Al4V control.In the polymerase chain reaction experiment,the expression of osteogenic genes in the Ti45Nb group,such as ALP,osteopontin(OPN),osteocalcin(OCN),type 1 collagen(Col-1)and runt-related transcription factor-2(Runx2),was significantly higher than that in the control group.Meanwhile,in the western blot experiment,the expression of osteogenic-related proteins in the Ti45Nb group was significantly increased,and the expression of PI3K–Akt-related proteins was also higher,which indicated that Ti45Nb might promote fracture healing by activating the PI3K–Akt signaling pathway.In vivo,we found that Ti45Nb implants accelerated fracture healing compared to Ti6Al4V,and the biosafety of Ti45Nb was confirmed by histological evaluation.Furthermore,immunohistochemical staining confirmed that Ti45Nb may promote osteogenesis by upregulating the PI3K/Akt signaling pathway.Our study demonstrated that Ti45Nb exerts an excellent ability to promote fracture healing as well as enhance osteoblast differentiation by activating the PI3K/Akt signaling pathway,and its good biosafety has been confirmed,which indicates its clinical translation potential.展开更多
Orthopedic implants for the treatment of bone defects from various causes have been challenged by insufficient osseointegration,bacterial infection,oxidative stress,immune rejection,and insufficient individualized tre...Orthopedic implants for the treatment of bone defects from various causes have been challenged by insufficient osseointegration,bacterial infection,oxidative stress,immune rejection,and insufficient individualized treatment.These challenges not only impact treatment outcomes but also severely impact patients’daily lives.Layer-by-Layer(LbL)serves as a simple surface coating technique,in simple terms,to functionalize implants by sequentially adsorbing oppositely charged materials onto a substrate.In orthopaedics,LbL self-assembly technology solves some of the challenges by loading various drugs or biological agents on the implant surface and controlling their release precisely to the site of bone defects in a personalized way.This review will introduce the basic principle and the development of LbL in orthopaedics,review and analyze the chemical strategy of LbL in the preparation of bone implants to ensure the stability of the implant,and introduce the use of LbL bone implants in orthopaedics in recent years.The application of LbL includes the realization of programmed drug delivery and sustained release,thereby promoting osseointegration and the formation of new blood vessels,antibacterial,antioxidant,etc.This review focuses on the LbL technology,involving the technology selection for the preparation of bone implants,the chemical strategies of the stability guarantee of LbL implants,the pharmacological properties,loading and release mechanisms of loaded drugs,and the molecular mechanisms of osteogenesis and angiogenesis.The aim of this review is to provide an overview of current research advances,and a prospect in this field was also described.展开更多
Biodegradable magnesium(Mg)alloys exhibit excellent biocompatibility,adequate mechanical properties,and osteogenic effect.They can contribute to complete recovery of damaged tissues without concerns about a second sur...Biodegradable magnesium(Mg)alloys exhibit excellent biocompatibility,adequate mechanical properties,and osteogenic effect.They can contribute to complete recovery of damaged tissues without concerns about a second surgery and have achieved clinical applications in orthopedic and cardiovascular fields.Porous scaffolds can provide functions such as bone integration and adjustable mechanical properties,thus widely used for bone repair.Additive manufacturing(AM)offers the advantages of design freedom and high precision,enabling the reliable production of porous scaffolds with customized structures.The combination of biodegradable Mg alloys,porous scaffolds,and AM processes has created tremendous opportunities for the precision treatment of bone defects.This article reviews the current development in the additive manufacturing process and design of Mg alloy biodegradable orthopedic implants,fo-cusing on chemical compositions,structural design,surface treatment,and their effects on mechanical properties,degradation behavior,and biocompatibility.Finally,the future perspective of porous Mg alloy biodegradable orthopedic implants is proposed.展开更多
Titanium(Ti)and its alloys have been widely used as orthopedic implants,because of their favorable mechanical properties,corrosion resistance and biocompatibility.Despite their significant success in various clinical ...Titanium(Ti)and its alloys have been widely used as orthopedic implants,because of their favorable mechanical properties,corrosion resistance and biocompatibility.Despite their significant success in various clinical applications,the probability of failure,degradation and revision is undesirably high,especially for the patients with low bone density,insufficient quantity of bone or osteoporosis,which renders the studies on surface modification of Ti still active to further improve clinical results.It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants.Therefore,it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration.This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical,physical and chemical treatments based on the formation mechanism of the modified coatings.Such conventional methods are able to improve bioactivity of Ti implants,but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues.Hence,beyond traditional static design,dynamic responsive avenues are then emerging.The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers.In short,this review surveys recent developments in the surface engineering of Ti materials,with a specific emphasis on advances in static to dynamic functionality,which provides perspectives for improving bioactivity and biocompatibility of Ti implants.展开更多
Magnesium alloys with integration of degradability and good mechanical performance are desired for orthopedic implants.In this paper,Mg-2Sr-Ca and Mg-2Sr-Zn alloys were prepared and the degradation as well as the bone...Magnesium alloys with integration of degradability and good mechanical performance are desired for orthopedic implants.In this paper,Mg-2Sr-Ca and Mg-2Sr-Zn alloys were prepared and the degradation as well as the bone response were investigated.Compared with the binary Mg-2Sr alloys,the addition of Ca and Zn improved the in vitro and in vivo corrosion resistance.Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited more uniform corrosion and maintained the configuration of the implants 4 weeks post-implantation.The in vivo corrosion rates were 0.85 mm/yr for Mg-2Sr-Zn and 1.10 mm/yr for Mg-2Sr-Ca in comparison with 1.37 mm/yr for Mg-2Sr.The in vitro cell tests indicated that Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited higher MG63 cell viability than Mg-2Sr alloy.Furthermore,these two alloys can promote the mineralization and new bone formation without inducing any significant adverse effects and this sound osteogenic properties suggest its attractive clinical potential.展开更多
300 MPa grade biodegradable Zn-(0.6,0.8)Mn-(<0.1)Mg alloys with yield strengths>300 MPa and elongations>15%have been developed,which are designated as Zn06Mn006Mg(HE)and Zn08Mn005Mg(HE)in as-extruded state.Th...300 MPa grade biodegradable Zn-(0.6,0.8)Mn-(<0.1)Mg alloys with yield strengths>300 MPa and elongations>15%have been developed,which are designated as Zn06Mn006Mg(HE)and Zn08Mn005Mg(HE)in as-extruded state.They are the newest members of a small group of biodegradable Zn alloys with mechanical properties beyond the generally accepted benchmark for orthopedic implants.Immersed in simulated body fluid for 30 days,Zn06Mn006Mg(HE)and Zn08Mn005Mg(HE)exhibit corrosion rates of 38 and 53μm y^(-1),respectively.They show high antibacterial rates of 93%-97%against E.coli.In 25%-75%extracts of both the alloys,MC3T3-E1 cell viabilities for 1 day and 3 days are all over 100%,indicating complete cytocompatibility.In 100%extracts for 3 days,both alloys show non-toxicity.After a longtime room temperature storage of 72 weeks,natural embrittling alike Zn-Mg alloys does not happen.The Zn-Mn-Mg alloys still have mechanical properties exceeding the benchmark by a large margin.The in vitro study shows the newly developed BHSDLA Zn-Mn-Mg alloys are promising candidates for orthopedic implants.展开更多
Poly(ether imide)(PEI)has shown satisfactory corrosion protection capability with good adhesion strength as a coating for magnesium(Mg),a potential candidate of biodegradable orthopedic implant material.However,its in...Poly(ether imide)(PEI)has shown satisfactory corrosion protection capability with good adhesion strength as a coating for magnesium(Mg),a potential candidate of biodegradable orthopedic implant material.However,its innate hydrophobic property causes insufficient osteoblast affinity and a lack of osseointegration.Herein,we modify the physical and chemical properties of a PEI-coated Mg implant.A plasma immersion ion implantation technique is combined with direct current(DC)magnetron sputtering to introduce biologically compatible tantalum(Ta)onto the surface of the PEI coating.The PEI-coating layer is not damaged during this process owing to the extremely short processing time(30 s),retaining its high corrosion protection property and adhesion stability.The Ta-implanted layer(roughly 10-nm-thick)on the topmost PEI surface generates long-term surface hydrophilicity and favorable surface conditions for pre-osteoblasts to adhere,proliferate,and differentiate.Furthermore,in a rabbit femur study,the Ta/PEI-coated Mg implant demonstrates significantly enhanced bone tissue affinity and osseointegration capability.These results indicate that Ta/PEI-coated Mg is promising for achieving early mechanical fixation and long-term success in biodegradable orthopedic implant applications.展开更多
Bacteria-associated infection represents one of the major threats for orthopedic implants failure during their life cycles.However,ordinary antimicrobial treatments usually failed to combat multiple waves of infection...Bacteria-associated infection represents one of the major threats for orthopedic implants failure during their life cycles.However,ordinary antimicrobial treatments usually failed to combat multiple waves of infections during arthroplasty and prosthesis revisions etc.As these incidents could easily introduce new microbial pathogens in/onto the implants.Herein,we demonstrate that an antimicrobial trilogy strategy incorporating a sophisticated multilayered coating system leveraging multiple ion exchange mechanisms and fine nanotopography tuning,could effectively eradicate bacterial infection at various stages of implantation.Early stage bacteriostatic effect was realized via nano-topological structure of top mineral coating.Antibacterial effect at intermediate stage was mediated by sustained release of zinc ions from doped CaP coating.Strong antibacterial potency was validated at 4 weeks post implantation via an implanted model in vivo.Finally,the underlying zinc titanate fiber network enabled a long-term contact and release effect of residual zinc,which maintained a strong antibacterial ability against both Staphylococcus aureus and Escherichia coli even after the removal of top layer coating.Moreover,sustained release of Sr2+and Zn2+during CaP coating degradation substantially promoted implant osseointegration even under an infectious environment by showing more peri-implant new bone formation and substantially improved bone-implant bonding strength.展开更多
Tantalum(Ta)is used in orthopedic implants because it has excellent biocompatibility.However,high elastic modulus,bio-inertness,and unsatisfactory osteointegration limits its wider use in clinical applications.Herein,...Tantalum(Ta)is used in orthopedic implants because it has excellent biocompatibility.However,high elastic modulus,bio-inertness,and unsatisfactory osteointegration limits its wider use in clinical applications.Herein,a 3 D porous Ta scaffold with low elastic modulus was fabricated using selective laser melting(SLM).Strontium(Sr)was incorporated on the surface of the scaffold with the aid of polydopamine(PDA)to further improve its osteointegration ability.The prepared scaffolds exhibited a stable Sr ion release in 14 d.Rat bone marrow stem cells(BMSCs)showed improved early adhesion and spreading after Sr was incorporated on the porous Ta surface.The osteogenic behavior,including extracellular matrix mineralization(ECM),alkaline phosphatase activity(ALP),and expression of bone-related RNA,were all enhanced.Furthermore,the Sr-incorporated porous Ta scaffolds exhibited better angiogenic behavior,such as promoting migration,tube formation,and angiogenesis-related RNA expression abilities of human vascular endothelial cells(HUVECs).Additionally,histological images(H&E,Masson and CD31 immunofluorescent staining)suggested that Sr-incorporated porous Ta scaffolds displayed enhanced osteointegration and angiogenesis after implantation in rat femur for 12 weeks.These findings prove that the PDA-based Sr-incorporated porous Ta scaffolds show promising use in orthopedic implants.展开更多
Magnesium (Mg) and its alloys as a novel kind of biodegradable material have attracted much funda- mental research and valuable exploration to develop its clinical application, Mg alloys degrade too fast at the earl...Magnesium (Mg) and its alloys as a novel kind of biodegradable material have attracted much funda- mental research and valuable exploration to develop its clinical application, Mg alloys degrade too fast at the early stage after implantation, thus commonly leading to some problems such as osteolysis, early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. Surface modification is one of the effective methods to control the degradation property of Mg alloys to adapt to the need of organism. Some coatings with bioactive elements have been developed, especially for the micro-arc oxidation coating, which has high adhesion strength and can be added with Ca, P, and Sr elements. Chemical deposition coating including bio-mimetic deposition coating, electro-deposition coating and chemical conversion coating can provide good anticorrosion property as well as better bioactivity with higher Ca and P content in the coating. From the biodegradation study, it can be seen that surface coating protected the Mg alloys at the early stage providing the Mg alloy substrate with lower degra-dation rate. The biocompatibility study showed that the surface modification could provide the cell and tissue stable and weak alkaline surface micro-environment adapting to the cell adhesion and tissue growth. The surface modification also decreased the mechanical loss at the early stage adapting to the load- bearing requirement at this stage. From the interface strength between Mg alloys implants and the surrounding tissue study, it can be seen that the surface modification improved the bio-adhesion of Mg alloys with the surrounding tissue, which is believed to be contributed to the tissue adaptability of the surface modification. Therefore, the surface modification adapts the biodegradable magnesium alloys to the need of hiodegradation, biocompatibility and mechanical loss property. For the different clinical application, different surface modification methods can be provided to adapt to the clinical requirements for the Mg alloy implants.展开更多
In recent years,pure iron(Fe)has attracted significant attention as a promising biodegradable orthopedic implant material due to its excellent mechanical and biological properties.However,in physiological conditions,F...In recent years,pure iron(Fe)has attracted significant attention as a promising biodegradable orthopedic implant material due to its excellent mechanical and biological properties.However,in physiological conditions,Fe has an extremely slow degradation rate with localized and irregular degradation,which is problematic for practical applications.In this study,we developed a novel combination of a nanostructured surface topography and galvanic reaction to achieve uniform and accelerated degradation of an Fe implant.The target-ion induced plasma sputtering(TIPS)technique was applied on the Fe implant to introduce biologically compatible and electrochemically noble tantalum(Ta)onto its surface and develop surface nano-galvanic couples.Electrochemical tests revealed that the uniformly distributed nano-galvanic corrosion cells of the TIPS-treated sample(nano Ta-Fe)led to relatively uniform and accelerated surface degradation compared to that of bare Fe.Furthermore,the mechanical properties of nano Ta-Fe remained almost constant during a long-term in vitro immersion test(~40 weeks).Biocompatibility was also assessed on surfaces of bare Fe and nano Ta-Fe using in vitro osteoblast responses through direct and indirect contact assays and an in vivo rabbit femur medullary cavity implantation model.The results revealed that nano Ta-Fe not only enhanced cell adhesion and spreading on its surface,but also exhibited no signs of cellular or tissue toxicity.These results demonstrate the immense potential of Ta-implanted surface nanostructures as an effective solution for the practical application of Fe-based orthopedic implants,ensuring long-term biosafety and clinical efficacy.展开更多
In this study,the microstructural evolution and mechanical properties of a newly developed Ti-40.7Zr-24.8Nb(TZN)alloy after different thermomechanical processes were examined.As-cast TZN alloy plates were solutiontrea...In this study,the microstructural evolution and mechanical properties of a newly developed Ti-40.7Zr-24.8Nb(TZN)alloy after different thermomechanical processes were examined.As-cast TZN alloy plates were solutiontreated at 890℃ for 1 h,after which the thickness of the alloy plates was reduced by cold rolling at reduction ratios of 20%,56%,76%,and 86%.Stress-induced α”formation,{332}<113>β mechanical twinning,and kink band formation were observed in the cold-rolled TZN alloy samples.In the TZN sample after cold rolling at the 86%reduction ratio plus a recrystallization annealing at 890℃ for 1 h,the deformation products of a stressinducedα”phase,{332}<113>β mechanical twinning,and kink bands disappeared,resulting in a fine,equiaxed singleβ phase.The alloy samples exhibited elongation at rupture ranging from 7%to 20%,Young's modulus ranging from 63 to 72 GPa and tensile strength ranging from 753 to 1158 MPa.The TZN alloy sample after cold rolling and recrystallization annealing showed a yield strength of 803 MPa,a tensile strength of 848 MPa,an elongation at rupture of 20%,and an elastic admissible strain of 1.22%,along with the most ductile fractures during tensile testing.展开更多
文摘BACKGROUND Open reduction and internal fixation represent prevalent orthopedic procedures,sparking ongoing discourse over whether to retain or remove asymptomatic implants.Achieving consensus on this matter is paramount for orthopedic surgeons.This study aims to quantify the impact of routine implant removal on patients and healthcare facilities.A retrospective analysis of implant removal cases from 2016 to 2022 at King Fahad Hospital of the University(KFHU)was conducted and subjected to statistical scrutiny.Among these cases,44%necessitated hospitalization exceeding one day,while 56%required only a single day.Adults exhibited a 55%need for extended hospital stays,contrasting with 22.8%among the pediatric cohort.The complication rate was 6%,with all patients experiencing at least one complication.Notably,34.1%required sick leave and 4.8%exceeded 14 d.General anesthesia was predominant(88%).Routine implant removal introduces unwarranted complications,particularly in adults,potentially prolonging hospitalization.This procedure strains hospital resources,tying up the operating room that could otherwise accommodate critical surgeries.Clearly defined institutional guidelines are imperative to regulate this practice.AIM To measure the burden of routine implant removal on the patients and hospital.METHODS This is a retrospective analysis study of 167 routine implant removal cases treated at KFHU,a tertiary hospital in Saudi Arabia.Data were collected in the orthopedic department at KFHU from February 2016 to August 2022,which includes routine asymptomatic implant removal cases across all age categories.Nonroutine indications such as infection,pain,implant failure,malunion,nonunion,restricted range of motion,and prominent hardware were excluded.Patients who had external fixators removed or joints replaced were also excluded.RESULTS Between February 2016 and August 2022,360 implants were retrieved;however,only 167 of those who met the inclusion criteria were included in this study.The remaining implants were rejected due to exclusion criteria.Among the cases,44%required more than one day in the hospital,whereas 56%required only one day.55%of adults required more than one day of hospitalization,while 22.8%of pediatric patients required more than one day of inpatient care.The complication rate was 6%,with each patient experiencing at least one complication.Sick leave was required in 34.1%of cases,with 4.8%requiring more than 14 d.The most common type of anesthesia used in the surgeries was general anesthesia(88%),and the mean(SD)surgery duration was 77.1(54.7)min.CONCLUSION Routine implant removal causes unnecessary complications,prolongs hospital stays,depletes resources and monopolizing operating rooms that could serve more critical procedures.
基金Project(2013CB632200)supported by the National Basic Research Program of ChinaProjects(51474043,51531002)supported by the National Natural Science Foundation of China+1 种基金Projects(CSTC2013JCYJC60001,KJZH14101)supported by Chongqing Municipal Government,ChinaProject(2015M581350)supported by the China Postdoctoral Science Foundation
文摘The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochemical tests. The results showed that, with the addition of 1% Sn and the Ca content of 0.2%?0.5%, the microstructure of the as-extruded Mg?Sn?Ca alloys became homogenous, which led to increased mechanical properties and improved corrosion resistance. Further increase of Ca content up to 1.5% improved the strength, but deteriorated the ductility and corrosion resistance. For the alloy containing 0.5% Ca, when the Sn content increased from 1% to 3%, the ultimate tensile strength increased with a decreased corrosion resistance, and the lowest yield strength and ductility appeared with the Sn content of 2%. These behaviors were determined by Sn/Ca mass ratio. The analyses showed that as-extruded Mg?1Sn?0.5Ca alloy was promising as a biodegradable orthopedic implant.
文摘Magnesium(Mg)and its alloys have been widely researched for orthopedic applications recently.Mg alloys have stupendous advantages over the commercially available stainless steel,Co-Cr-Ni alloy and titanium implants.Till date,extensive mechanical,in-vitro and in-vivo studies have been done to improve the biomedical performance of Mg alloys through alloying,processing conditions,surface modification etc.This review comprehensively describes the strategies for improving the mechanical and degradation performance of Mg alloys through properly tailoring the composition of alloying elements,reinforcements and processing techniques.It also highlights the status and progress of research in to(i)the selection of nutrient elements for alloying,reinforcement and its effects(ii)type of Mg alloy system(binary,ternary and quaternary)and composites(iii)grain refinement for strengthening through severe plastic deformation techniques.Furthermore it also emphasizes on the importance of Mg composites with regard to hard tissue applications.
基金performed under contracts no.46N/2019-project no.PN19310102/2019 and 30PFE/2018 between the National Institute for Research and Development in Electrical Engineering ICPE-CA and the Romanian Ministry of Research and Innovation
文摘The last decade has seen a significant growth in the market for alloys used for implants,especially for those intended for orthopedic implants.Research into biodegradable magnesium-based alloys has made great strides in this period,so huge progress has been made in their use in the medical industry.The important factors that led to the intensification of research in this regard,were social but also economic,wanting to improve the quality of life,by reducing the use of conventionally permanent metallic implants(stainless steel,cobalt-based alloys,and titanium alloys)which involve the second implant removal surgery and other undesirable effects(stress shielding and metal ion releases),with a negative impact on the emotional and physical condition of patients,and by significantly reducing the costs for both the patient and the health system in the field of orthopedics.This paper refers to the impact and importance of biodegradable Mg alloys,reviewing the beginning of their development,the significant characteristics that make them so desirable for such applications(orthopedic implants)but also the characteristics that must be modulated(corrosion rate and mechanical properties)to arrive at the ideal product for the targeted application.It highlights,in detail,the mechanism and aspects related to the corrosion behaviour of Mg alloys,electrochemical characterization techniques/methods,as well as strategies to improve the corrosion behaviour and mechanical properties of these types of biodegradable alloys.The means of optimization,the category and the effect of the alloying elements,the design criteria,the requirements that the implants of biodegradable alloys Mg-based must meet and the aspects related to their efficiency are also presented.Finally,the potential applications in the specialized clinics,as well as the final products currently used and made by important prestigious companies in the world are approached.
基金The authors would like to thank the Helmholtz-Zentrum Geesthacht and Fesil Company(Germany)for the alloys syn-thesis and casting.
文摘Mg-Ca alloys have recently attracted great attention towards the research in the field of orthopedic biodegradable implants.This study presents an in vitro degradation assessment of Mg-0.8Ca(0.8 wt.%of Ca)alloy in Hank’s balanced salt solution(HBSS).Immersion,hydrogen evolution and electrochemical behavior was studied as well as the cytotoxicity of the degradation products.Morphology and phase composition of the corrosion products were studied using SEM,EDX and XRD techniques.Degradation in HBSS resulted in the formation of the needle-shaped carbonated hydroxyapatite which was similar to the biological apatite in the human bone.Degradation kinetics showed that Mg-0.8Ca alloy had approximately 3-fold faster degradation rate than the pure Mg(1.08±0.38 mm/year for Mg-0.8Ca and 0.35±0.17 mm/year for pure Mg),as observed in two independent experiments.Both,pure Mg and Mg-0.8Ca alloy were biocompatible,generating no cytotoxic degradation products against human-derived HEK 293 cells.Thus,the Mg-0.8Ca alloy was found to be a promising biodegradable implant in terms of bioactivity and compatibility with human cell lines.Depending on the application of the implant and the estimated healing time of the bone,the desired degradation rate of an implant can be controlled by the Mg-Ca composition of such alloys.
文摘Magnesium(Mg)has emerged as one of the third-generation biomaterials for regeneration and support of functional bone tissue.Mg is a better choice over permanent implants such as titanium,stainless steel,cobalt-chrome as magnesium is biodegradable and does not require a second surgery for its removal after bone tissue recovery.It also reduces the risk of stress shielding as its elastic modulus is closer to human bone in comparison to permanent implants and other biodegradable metallic implants based on Iron and Zinc.Most importantly,Mg is osteoconductive thus stimulates new bone formation and possess anti-bacterial properties hence reducing the risk of failure due to infection.Despite its advantages,a major concern with pure Mg is its rapid bio-corrosion in presence of body fluids due to which the mechanical integrity of the implant deteriorates before healing of the tissue is complete.Mechanical properties of Mg-based implants can be enhanced by mechanical processing,alloying,and topology optimization.To reduce the corrosion/degradation rate,Mg has been alloyed with metals,reinforced with ceramics,and surface coatings have been applied so that the degradation rate of Mg-based implant matches with that of healing rate of bone tissue.The present review discusses the effect of alloying elements and reinforcing ceramics on microstructure,mechanical,and corrosion properties of Mg-based orthopedic implants.In addition,the biocompatibility of Mg-based alloys,composites,and coatings applied on Mg implants has been highlighted.Further,different methods of fabricating porous implants have been highlighted as making the implant porous facilitates the growth of new bone tissue through the pores.
基金Supported by Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support,No.20161423.
文摘Bone marrow-derived mesenchymal stem cells(BMSCs)play a critical role in the osseointegration of bone and orthopedic implant.However,osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium’s inherent defects.Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate.Here,we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys.We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration,and discuss recent advances in understanding their role in regenerative medicine.We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.
基金Agricultural Research Service,Grant/Award Number:58-6402-3-018NIH Clinical Center,Grant/Award Number:5T35OD010432 and P20GM103646-07Mississippi State University Office of Research and Economic Development。
文摘Infection of bone tissue,or osteomyelitis,has become a growing concern in modern healthcare due in no small part to a rise in antibiotic resistance among bacteria,notably Staphylococcus aureus.The current standard of care involves aggressive,prolonged antibiotic therapy combined with surgical debridement of infected tissues.While this treatment may be sufficient for resolving a portion of cases,recurrences of the infection and associated risks including toxicity with long-term antibiotic usage have been reported.Therefore,there exists a need to produce safer,more efficacious options of treatment for osteomyelitis.In order to test treatment regimens,animal models that closely mimic the clinical condition and allow for accurate evaluation of therapeutics are necessary.Establishing a model that replicates features of osteomyelitis in humans continues to be a challenge to scientists,as there are many variables involved,including choosing an appropriate species and method to establish infection.This review addresses the refinement of animal models of osteomyelitis to reflect the clinical disease and test prospective therapeutics.The aim of this review is to explore studies regarding the use of animals for osteomyelitis therapeutics research and encourage further development of such animal models for the translation of results from the animal experiment to human medicine.
基金This work was supported by the National Natural Science Foundation of China(Nos.81972058,81902194 and 82202680)the Science and Technology Commission of Shanghai Municipality(No.22YF1422900)+3 种基金the Shanghai Municipal Key Clinical Specialty,China(No.shslczdzk06701)the National Facility for Translational Medicine(Shanghai),China(No.TMSZ-2020-207)the Shanghai Engineering Research Center of Orthopedic Innovative Instruments and Personalized Medicine Instruments and Personalized Medicine(No.19DZ2250200)the Key R&D Program of Ningxia,China(Nos.2020BCH01001 and 2021BEG02037).
文摘The key to managing fracture is to achieve stable internal fixation,and currently,biologically and mechanically appropriate internal fixation devices are urgently needed.With excellent biocompatibility and corrosion resistance,titanium–niobium alloys have the potential to become a new generation of internal fixation materials for fractures.However,the role and mechanism of titanium–niobium alloys on promoting fracture healing are still undefined.Therefore,in this study,we systematically evaluated the bone-enabling properties of Ti45Nb via in vivo and in vitro experiments.In vitro,we found that Ti45Nb has an excellent ability to promote MC3T3-E1 cell adhesion and proliferation without obvious cytotoxicity.Alkaline phosphatase(ALP)activity and alizarin red staining and semiquantitative analysis showed that Ti45Nb enhanced the osteogenic differentiation of MC3T3-E1 cells compared to the Ti6Al4V control.In the polymerase chain reaction experiment,the expression of osteogenic genes in the Ti45Nb group,such as ALP,osteopontin(OPN),osteocalcin(OCN),type 1 collagen(Col-1)and runt-related transcription factor-2(Runx2),was significantly higher than that in the control group.Meanwhile,in the western blot experiment,the expression of osteogenic-related proteins in the Ti45Nb group was significantly increased,and the expression of PI3K–Akt-related proteins was also higher,which indicated that Ti45Nb might promote fracture healing by activating the PI3K–Akt signaling pathway.In vivo,we found that Ti45Nb implants accelerated fracture healing compared to Ti6Al4V,and the biosafety of Ti45Nb was confirmed by histological evaluation.Furthermore,immunohistochemical staining confirmed that Ti45Nb may promote osteogenesis by upregulating the PI3K/Akt signaling pathway.Our study demonstrated that Ti45Nb exerts an excellent ability to promote fracture healing as well as enhance osteoblast differentiation by activating the PI3K/Akt signaling pathway,and its good biosafety has been confirmed,which indicates its clinical translation potential.
文摘Orthopedic implants for the treatment of bone defects from various causes have been challenged by insufficient osseointegration,bacterial infection,oxidative stress,immune rejection,and insufficient individualized treatment.These challenges not only impact treatment outcomes but also severely impact patients’daily lives.Layer-by-Layer(LbL)serves as a simple surface coating technique,in simple terms,to functionalize implants by sequentially adsorbing oppositely charged materials onto a substrate.In orthopaedics,LbL self-assembly technology solves some of the challenges by loading various drugs or biological agents on the implant surface and controlling their release precisely to the site of bone defects in a personalized way.This review will introduce the basic principle and the development of LbL in orthopaedics,review and analyze the chemical strategy of LbL in the preparation of bone implants to ensure the stability of the implant,and introduce the use of LbL bone implants in orthopaedics in recent years.The application of LbL includes the realization of programmed drug delivery and sustained release,thereby promoting osseointegration and the formation of new blood vessels,antibacterial,antioxidant,etc.This review focuses on the LbL technology,involving the technology selection for the preparation of bone implants,the chemical strategies of the stability guarantee of LbL implants,the pharmacological properties,loading and release mechanisms of loaded drugs,and the molecular mechanisms of osteogenesis and angiogenesis.The aim of this review is to provide an overview of current research advances,and a prospect in this field was also described.
基金funded by the National Key Research and Devel-opment Program of China(2018YFE0104200)the National Natural Science Foundation of China(52175274,82172065,and 51875310)+1 种基金the Tsinghua-Toyota Joint Research Fund,the Tsinghua Precision Medicine Foundationthe Cross-Strait Tsinghua Research Insti-tute Fund.
文摘Biodegradable magnesium(Mg)alloys exhibit excellent biocompatibility,adequate mechanical properties,and osteogenic effect.They can contribute to complete recovery of damaged tissues without concerns about a second surgery and have achieved clinical applications in orthopedic and cardiovascular fields.Porous scaffolds can provide functions such as bone integration and adjustable mechanical properties,thus widely used for bone repair.Additive manufacturing(AM)offers the advantages of design freedom and high precision,enabling the reliable production of porous scaffolds with customized structures.The combination of biodegradable Mg alloys,porous scaffolds,and AM processes has created tremendous opportunities for the precision treatment of bone defects.This article reviews the current development in the additive manufacturing process and design of Mg alloy biodegradable orthopedic implants,fo-cusing on chemical compositions,structural design,surface treatment,and their effects on mechanical properties,degradation behavior,and biocompatibility.Finally,the future perspective of porous Mg alloy biodegradable orthopedic implants is proposed.
基金supported by National Key Research and Development Program of China(grant Nos.2020YFC2004900,2016YFC1100300)the National Natural Science Foundation of China(grant Nos.21773199,51571169,52001265).
文摘Titanium(Ti)and its alloys have been widely used as orthopedic implants,because of their favorable mechanical properties,corrosion resistance and biocompatibility.Despite their significant success in various clinical applications,the probability of failure,degradation and revision is undesirably high,especially for the patients with low bone density,insufficient quantity of bone or osteoporosis,which renders the studies on surface modification of Ti still active to further improve clinical results.It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants.Therefore,it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration.This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical,physical and chemical treatments based on the formation mechanism of the modified coatings.Such conventional methods are able to improve bioactivity of Ti implants,but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues.Hence,beyond traditional static design,dynamic responsive avenues are then emerging.The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers.In short,this review surveys recent developments in the surface engineering of Ti materials,with a specific emphasis on advances in static to dynamic functionality,which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
基金supported by the National Key R&D Program of China(2018YFC1106600)A Foundation for the Author of National Excellent Doctoral Dissertation of PR China(201463)+2 种基金Young Elite Scientists Sponsorship Program By CAST(2017QNRC001)Beijing Natural Science Foundation(2192027)the National Natural Science Foundation of China(81572109).
文摘Magnesium alloys with integration of degradability and good mechanical performance are desired for orthopedic implants.In this paper,Mg-2Sr-Ca and Mg-2Sr-Zn alloys were prepared and the degradation as well as the bone response were investigated.Compared with the binary Mg-2Sr alloys,the addition of Ca and Zn improved the in vitro and in vivo corrosion resistance.Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited more uniform corrosion and maintained the configuration of the implants 4 weeks post-implantation.The in vivo corrosion rates were 0.85 mm/yr for Mg-2Sr-Zn and 1.10 mm/yr for Mg-2Sr-Ca in comparison with 1.37 mm/yr for Mg-2Sr.The in vitro cell tests indicated that Mg-2Sr-Ca and Mg-2Sr-Zn alloys exhibited higher MG63 cell viability than Mg-2Sr alloy.Furthermore,these two alloys can promote the mineralization and new bone formation without inducing any significant adverse effects and this sound osteogenic properties suggest its attractive clinical potential.
基金This work was financially supported by the National Natural Science Foundation of China(No.52071028)Fundamental Research Funds for the Central Universities(No.FRF-TP-19-022A3Z).
文摘300 MPa grade biodegradable Zn-(0.6,0.8)Mn-(<0.1)Mg alloys with yield strengths>300 MPa and elongations>15%have been developed,which are designated as Zn06Mn006Mg(HE)and Zn08Mn005Mg(HE)in as-extruded state.They are the newest members of a small group of biodegradable Zn alloys with mechanical properties beyond the generally accepted benchmark for orthopedic implants.Immersed in simulated body fluid for 30 days,Zn06Mn006Mg(HE)and Zn08Mn005Mg(HE)exhibit corrosion rates of 38 and 53μm y^(-1),respectively.They show high antibacterial rates of 93%-97%against E.coli.In 25%-75%extracts of both the alloys,MC3T3-E1 cell viabilities for 1 day and 3 days are all over 100%,indicating complete cytocompatibility.In 100%extracts for 3 days,both alloys show non-toxicity.After a longtime room temperature storage of 72 weeks,natural embrittling alike Zn-Mg alloys does not happen.The Zn-Mn-Mg alloys still have mechanical properties exceeding the benchmark by a large margin.The in vitro study shows the newly developed BHSDLA Zn-Mn-Mg alloys are promising candidates for orthopedic implants.
基金a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI)the Ministry of Health&Welfare,Republic of Korea(grant number:HI18C0493).
文摘Poly(ether imide)(PEI)has shown satisfactory corrosion protection capability with good adhesion strength as a coating for magnesium(Mg),a potential candidate of biodegradable orthopedic implant material.However,its innate hydrophobic property causes insufficient osteoblast affinity and a lack of osseointegration.Herein,we modify the physical and chemical properties of a PEI-coated Mg implant.A plasma immersion ion implantation technique is combined with direct current(DC)magnetron sputtering to introduce biologically compatible tantalum(Ta)onto the surface of the PEI coating.The PEI-coating layer is not damaged during this process owing to the extremely short processing time(30 s),retaining its high corrosion protection property and adhesion stability.The Ta-implanted layer(roughly 10-nm-thick)on the topmost PEI surface generates long-term surface hydrophilicity and favorable surface conditions for pre-osteoblasts to adhere,proliferate,and differentiate.Furthermore,in a rabbit femur study,the Ta/PEI-coated Mg implant demonstrates significantly enhanced bone tissue affinity and osseointegration capability.These results indicate that Ta/PEI-coated Mg is promising for achieving early mechanical fixation and long-term success in biodegradable orthopedic implant applications.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2018YFC1105401,2018YFC1105404)National Natural Science Foundation of China(81702118,31870959)2018 Zhejiang University Academic Award for Outstanding Doctoral Candidates and Medical and Health Science and Technology Plan of Department of Health of Zhejiang Province(WKJ-ZJ-1821).
文摘Bacteria-associated infection represents one of the major threats for orthopedic implants failure during their life cycles.However,ordinary antimicrobial treatments usually failed to combat multiple waves of infections during arthroplasty and prosthesis revisions etc.As these incidents could easily introduce new microbial pathogens in/onto the implants.Herein,we demonstrate that an antimicrobial trilogy strategy incorporating a sophisticated multilayered coating system leveraging multiple ion exchange mechanisms and fine nanotopography tuning,could effectively eradicate bacterial infection at various stages of implantation.Early stage bacteriostatic effect was realized via nano-topological structure of top mineral coating.Antibacterial effect at intermediate stage was mediated by sustained release of zinc ions from doped CaP coating.Strong antibacterial potency was validated at 4 weeks post implantation via an implanted model in vivo.Finally,the underlying zinc titanate fiber network enabled a long-term contact and release effect of residual zinc,which maintained a strong antibacterial ability against both Staphylococcus aureus and Escherichia coli even after the removal of top layer coating.Moreover,sustained release of Sr2+and Zn2+during CaP coating degradation substantially promoted implant osseointegration even under an infectious environment by showing more peri-implant new bone formation and substantially improved bone-implant bonding strength.
基金the National Natural Science Foundation of China(Nos.31700880 and 81972126)the China Postdoctoral Science Foundation(No.2019M662830)+2 种基金the Natural Science Foundation of Guangdong Province,China(No.2020A1515010827 and 2018A030313709)the Science and Technology Planning Project of Guangzhou City(No.201803010106)the High-level Hospital Construction Project(No.KJ012019100)。
文摘Tantalum(Ta)is used in orthopedic implants because it has excellent biocompatibility.However,high elastic modulus,bio-inertness,and unsatisfactory osteointegration limits its wider use in clinical applications.Herein,a 3 D porous Ta scaffold with low elastic modulus was fabricated using selective laser melting(SLM).Strontium(Sr)was incorporated on the surface of the scaffold with the aid of polydopamine(PDA)to further improve its osteointegration ability.The prepared scaffolds exhibited a stable Sr ion release in 14 d.Rat bone marrow stem cells(BMSCs)showed improved early adhesion and spreading after Sr was incorporated on the porous Ta surface.The osteogenic behavior,including extracellular matrix mineralization(ECM),alkaline phosphatase activity(ALP),and expression of bone-related RNA,were all enhanced.Furthermore,the Sr-incorporated porous Ta scaffolds exhibited better angiogenic behavior,such as promoting migration,tube formation,and angiogenesis-related RNA expression abilities of human vascular endothelial cells(HUVECs).Additionally,histological images(H&E,Masson and CD31 immunofluorescent staining)suggested that Sr-incorporated porous Ta scaffolds displayed enhanced osteointegration and angiogenesis after implantation in rat femur for 12 weeks.These findings prove that the PDA-based Sr-incorporated porous Ta scaffolds show promising use in orthopedic implants.
基金supported by the National Basic Research Program of China (973 Program, No. 2012CB619101)
文摘Magnesium (Mg) and its alloys as a novel kind of biodegradable material have attracted much funda- mental research and valuable exploration to develop its clinical application, Mg alloys degrade too fast at the early stage after implantation, thus commonly leading to some problems such as osteolysis, early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. Surface modification is one of the effective methods to control the degradation property of Mg alloys to adapt to the need of organism. Some coatings with bioactive elements have been developed, especially for the micro-arc oxidation coating, which has high adhesion strength and can be added with Ca, P, and Sr elements. Chemical deposition coating including bio-mimetic deposition coating, electro-deposition coating and chemical conversion coating can provide good anticorrosion property as well as better bioactivity with higher Ca and P content in the coating. From the biodegradation study, it can be seen that surface coating protected the Mg alloys at the early stage providing the Mg alloy substrate with lower degra-dation rate. The biocompatibility study showed that the surface modification could provide the cell and tissue stable and weak alkaline surface micro-environment adapting to the cell adhesion and tissue growth. The surface modification also decreased the mechanical loss at the early stage adapting to the load- bearing requirement at this stage. From the interface strength between Mg alloys implants and the surrounding tissue study, it can be seen that the surface modification improved the bio-adhesion of Mg alloys with the surrounding tissue, which is believed to be contributed to the tissue adaptability of the surface modification. Therefore, the surface modification adapts the biodegradable magnesium alloys to the need of hiodegradation, biocompatibility and mechanical loss property. For the different clinical application, different surface modification methods can be provided to adapt to the clinical requirements for the Mg alloy implants.
基金This study was supported by the Technology Innovation Program(Material parts package business)(No.20001221,Development of high strength and fatigue resistance metal and manufacturing technology for root analogue dental implants)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘In recent years,pure iron(Fe)has attracted significant attention as a promising biodegradable orthopedic implant material due to its excellent mechanical and biological properties.However,in physiological conditions,Fe has an extremely slow degradation rate with localized and irregular degradation,which is problematic for practical applications.In this study,we developed a novel combination of a nanostructured surface topography and galvanic reaction to achieve uniform and accelerated degradation of an Fe implant.The target-ion induced plasma sputtering(TIPS)technique was applied on the Fe implant to introduce biologically compatible and electrochemically noble tantalum(Ta)onto its surface and develop surface nano-galvanic couples.Electrochemical tests revealed that the uniformly distributed nano-galvanic corrosion cells of the TIPS-treated sample(nano Ta-Fe)led to relatively uniform and accelerated surface degradation compared to that of bare Fe.Furthermore,the mechanical properties of nano Ta-Fe remained almost constant during a long-term in vitro immersion test(~40 weeks).Biocompatibility was also assessed on surfaces of bare Fe and nano Ta-Fe using in vitro osteoblast responses through direct and indirect contact assays and an in vivo rabbit femur medullary cavity implantation model.The results revealed that nano Ta-Fe not only enhanced cell adhesion and spreading on its surface,but also exhibited no signs of cellular or tissue toxicity.These results demonstrate the immense potential of Ta-implanted surface nanostructures as an effective solution for the practical application of Fe-based orthopedic implants,ensuring long-term biosafety and clinical efficacy.
基金the financial support for this research by the National Health and Medical Research Council(NHMRC),Australia,through grant GNT1087290and the Australian Research Council(ARC)through the discovery grant DP170102557+1 种基金YL is also supported through an ARC Future Fellowship(FT160100252)the support for this research by Hunan Provincial Natural Science Foundation of China through the Grant 2016JC2005.
文摘In this study,the microstructural evolution and mechanical properties of a newly developed Ti-40.7Zr-24.8Nb(TZN)alloy after different thermomechanical processes were examined.As-cast TZN alloy plates were solutiontreated at 890℃ for 1 h,after which the thickness of the alloy plates was reduced by cold rolling at reduction ratios of 20%,56%,76%,and 86%.Stress-induced α”formation,{332}<113>β mechanical twinning,and kink band formation were observed in the cold-rolled TZN alloy samples.In the TZN sample after cold rolling at the 86%reduction ratio plus a recrystallization annealing at 890℃ for 1 h,the deformation products of a stressinducedα”phase,{332}<113>β mechanical twinning,and kink bands disappeared,resulting in a fine,equiaxed singleβ phase.The alloy samples exhibited elongation at rupture ranging from 7%to 20%,Young's modulus ranging from 63 to 72 GPa and tensile strength ranging from 753 to 1158 MPa.The TZN alloy sample after cold rolling and recrystallization annealing showed a yield strength of 803 MPa,a tensile strength of 848 MPa,an elongation at rupture of 20%,and an elastic admissible strain of 1.22%,along with the most ductile fractures during tensile testing.