期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction 被引量:2
1
作者 Huitao Yu Lianqiang Peng +2 位作者 Can Chen Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期136-148,共13页
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff... Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes. 展开更多
关键词 orthotropic continuous structures Hybrid carbon networks Carbon/polymer composites Thermal interface materials
下载PDF
Vibration of black phosphorus nanotubes via orthotropic cylindrical shell model
2
作者 Minglei He Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期166-173,共8页
Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingopti... Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingoptimized nanodevices.In this paper,the mechanical behaviour and vibration property of BPNTs are studied viaorthotropic cylindrical shell model and molecular dynamics(MD)simulation.The vibration frequencies of twochiral BPNTs are analysed systematically.According to the results of MD calculations,it is revealed that thenatural frequencies of two BPNTs with approximately equal sizes are unequal at each order,and that the naturalfrequencies of armchair BPNTs are higher than those of zigzag BPNTs.In addition,an armchair BPNTs witha stable structure is considered as the object of research,and the vibration frequencies of BPNTs of differentsizes are analysed.When comparing the MD results,it is found that both the isotropic cylindrical shell modeland orthotropic cylindrical shell model can better predict the thermal vibration of the lower order modes of thelonger BPNTs better.However,for the vibration of shorter and thinner BPNTs,the prediction of the orthotropiccylindrical shell model is obviously superior to the isotropic shell model,thereby further proving the validity ofthe shell model that considers orthotropic for BPNTs. 展开更多
关键词 orthotropic cylindrical shell Molecular dynamics simulation Black phosphorus nanotube VIBRATION
下载PDF
Finite element simulation and optimal analysis of surfacing on steel orthotropic bridge deck 被引量:2
3
作者 谭积青 徐伟 张肖宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期539-543,共5页
To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ... To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design. 展开更多
关键词 steel orthotropic deck bridge deck overlay finite element submodeling optimal analysis fatigue test
下载PDF
PIEZORESISTANCE CHARACTERISTICS OF ORTHOTROPIC MATERIALS
4
作者 肖军 樊蔚勋 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期107-110,共4页
In this paper three important characteristics in piezoresistance for the orthotropic material are given and proved theoretically:(1) The piezoresistance on the principal axis of an orthotropic material is independent ... In this paper three important characteristics in piezoresistance for the orthotropic material are given and proved theoretically:(1) The piezoresistance on the principal axis of an orthotropic material is independent of shear strains/stresses, but correlated with the normal strains/stresses only;(2) On the principal axis of material, following relations between piezoconductivity and piezoresistivity exist η iikk =-(γ ii ) -2 ξ iikk =-(ρ ii ) 2ξ iikk λ iikk =-(γ ii ) -2 χ iikk =-(ρ ii ) 2χ iikk (3) A laminate composed of orthotropic laminae in different orientations is orthotropic for its average/effective properties. 展开更多
关键词 orthotropic MATERIALS principal AXIS of MATE rial piezoconductivity PIEZORESISTIVITY
下载PDF
Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables 被引量:8
5
作者 Hong-Ling Ye Wei-Wei Wang +1 位作者 Ning Chen Yun-Kang Sui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期899-911,共13页
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, conti... The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion. 展开更多
关键词 Topology optimization Buckling constraints orthotropic material Plate/shell structure ICM method
下载PDF
Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation 被引量:5
6
作者 Wei-An Yao Xiao-Fei Hu Feng Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期929-937,共9页
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish d... This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method. 展开更多
关键词 orthotropic plate Symplectic space Winklerelastic foundation Analytical solution
下载PDF
An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets 被引量:4
7
作者 Xinsheng Xu Dalun Rong +2 位作者 C.W.Lim Changyu Yang Zhenhuan Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期912-925,共14页
A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introduc... A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introducing a total unknown vector consisting of the displacement amplitude, rotation angle, shear force, and bending moment. The high-order governing differential equation of the vibration of SLGSs is transformed into a set of ordinary differential equations in symplectic space. Exact solutions for free vibration are obtianed by the method of separation of variables without any trial shape functions and can be expanded in series of symplectic eigenfunctions. Analytical frequency equations are derived for all six possible boundary conditions. Vibration modes are expressed in terms of the symplectic eigenfunctions. In the numerical examples, comparison is presented to verify the accuracy of the proposed method. Comprehensive numerical examples for graphene sheets with Levy-type boundary conditions are given. A parametric study of the natural frequency is also included. 展开更多
关键词 Hamiltonian system Analytical method Nonlocal elasticity theory orthotropic graphene sheet Natural frequency
下载PDF
A THREE-DIMENSIONAL SOLUTION FOR LAMINATED ORTHOTROPIC RECTANGULAR PLATES WITH VISCOELASTIC INTERFACES 被引量:5
8
作者 Yan Wei Ying Ji Chen Weiqiu 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期181-188,共8页
When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certa... When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certain viscoelastic characteristic in a high temperature environment. In this paper, a laminated orthotropic rectangular plate with viscoelastic interfaces, described by the Kelvin-Voigt model, is considered. A power series expansion technique is adopted to approximate the time-variation of various field quantities. Results indicate that the response of the laminated plate with viscoelastic interfaces changes remarkably with time, and is much different from that of a plate with spring-like or viscous interfaces. 展开更多
关键词 laminated orthotropic plate state-space method viscoelastic interfaces KelvinVoigt model
下载PDF
Time-reverse location of microseismic sources in viscoelastic orthotropic anisotropic medium based on attenuation compensation 被引量:4
9
作者 Tang Jie Liu Ying-Chang +1 位作者 Wen Lei Li Cong 《Applied Geophysics》 SCIE CSCD 2020年第4期544-560,共17页
Time reversal is a key component of time-reverse migration and source location using wavefield extrapolation.The implementation of time reversal depends on the time symmetry of wave equations in acoustic and elastic m... Time reversal is a key component of time-reverse migration and source location using wavefield extrapolation.The implementation of time reversal depends on the time symmetry of wave equations in acoustic and elastic media.This symmetry in time is no longer valid in attenuative medium.Not only the velocity is anisotropic in shale oil and gas reservoirs,but also the attenuation is usually anisotropic,which can be characterized by viscoelastic orthotropic media.In this paper,the fractional order viscoelastic anisotropic wave equation is used to decouple the energy dissipation and the velocity dispersion.By changing the sign of the dissipation term during backpropagation,the anisotropic attenuation is compensated and the time symmetry is restored.The attenuation compensation time-reverse location algorithm can eff ectively locate the source in viscoelastic orthotropic media.Compared to cases without attenuation compensation or using isotropic attenuation compensation,this method can remove location error caused by anisotropic attenuation and improve the imaging eff ect of the source.This paper verifi es the eff ectiveness of the method through theoretical analysis and model testing. 展开更多
关键词 Viscoelastic orthotropic anisotropy microseismic time-reverse location fractional order attenuation compensation
下载PDF
EXACT SOLUTION FOR ORTHOTROPIC MATERIALS WEAKENED BY DOUBLY PERIODIC CRACKS OF UNEQUAL SIZE UNDER ANTIPLANE SHEAR 被引量:4
10
作者 Junhua Xiao Chiping Jiang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第1期53-63,共11页
Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique,... Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique, the elliptical function theory and the theory of analytical function boundary value problems, a closed form solution of the whole-field stress is obtained. The exact formulae for the stress intensity factor at the crack tip and the effective antiplane shear modulus of the cracked orthotropic material are derived. A comparison with the finite element method shows the efficiency and accuracy of the present method. Several illustrative examples are provided, and an interesting phenomenon is observed, that is, the stress intensity factor and the dimensionless effective modulus are independent of the material property for a doubly periodic cracked isotropic material, but depend strongly on the material property for the doubly periodic cracked orthotropic material. Such a phenomenon for antiplane problems is similar to that for in-plane problems. The present solution can provide benchmark results for other numerical and approximate methods. 展开更多
关键词 orthotropic material a doubly periodic array of cracks antiplane shear boundary value problem stress intensity factor effective modulus
下载PDF
FURTHER IMPROVEMENT ON FUNDAMENTAL SOLUTIONS OF PLANE PROBLEMS FOR ORTHOTROPIC MATERIALS 被引量:4
11
作者 Sun Xiushan Cen Zhangzhi 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期171-181,共11页
On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials ar... On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials are obtained. Two parametersbased on material constants a_1, a_2 are used to derive the rele-vant expressions in a real variable form. Additionally, an analyticalmethod of solving the singular integral for the internal stresses isintroduced, and the corresponding result are given. If a_1=a_2=1, allthe expres- sions obtained for orthotropy can be reduced to thecorresponding ones for isotropy. Because all these expres- sions andresults can be directly used for both isotropic problems andorthotropic problems, it is convenient to use them in engineeringwith the boundary element method (BEM). 展开更多
关键词 BEM fundamental solution plane elastoplastic problem orthotropic material
下载PDF
THE EVALUATION OF STRESS INTENSITY FACTORS OF PLANE CRACK FOR ORTHOTROPIC PLATE WITH EQUAL PARAMETER BY F2LFEM 被引量:3
12
作者 Fan Jie Zhang Xiaochun +1 位作者 A.Y.T. LEUNG Zhong Weifang 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期128-134,共7页
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solutio... In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF). 展开更多
关键词 plane crack orthotropic plate fractal finite element stress intensity factor
下载PDF
The analytical solutions for orthotropic cantilever beams (Ⅰ):Subjected to surface forces 被引量:2
13
作者 江爱民 丁皓江 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第2期126-131,共6页
This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of ... This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods. 展开更多
关键词 General solution orthotropic media Cantilever beams Analytical solutions
下载PDF
Analysis of stress intensity factor in orthotropic bi-material mixed interface crack 被引量:2
14
作者 赵文彬 张雪霞 +1 位作者 崔小朝 杨维阳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1271-1292,共22页
Adopting the complex function approach, the paper studies the stress intensity factor in orthotropic bi-material interface cracks under mixed loads. With con- sideration of the boundary conditions, a new stress functi... Adopting the complex function approach, the paper studies the stress intensity factor in orthotropic bi-material interface cracks under mixed loads. With con- sideration of the boundary conditions, a new stress function is introduced to transform the problem of bi-material interface crack into a boundary value problem of partial dif- ferential equations. Two sets of non-homogeneous linear equations with 16 unknowns are constructed. By solving the equations, the expressions for the real bi-material elastic constant εt and the real stress singularity exponents λt are obtained with the bi-material engineering parameters satisfying certain conditions. By the uniqueness theorem of limit, undetermined coefficients are determined, and thus the bi-material stress intensity factor in mixed cracks is obtained. The bi-material stress intensity factor characterizes features of mixed cracks. When orthotropic bi-materials are of the same material, the degenerate solution to the stress intensity factor in mixed bi-material interface cracks is in complete agreement with the present classic conclusion. The relationship between the bi-material stress intensity factor and the ratio of bi-material shear modulus and the relationship be- tween the bi-material stress intensity factor and the ratio of bi-material Young's modulus are given in the numerical analysis. 展开更多
关键词 interface crack stress intensity factor BI-MATERIAL orthotropic complexvariable method
下载PDF
Stress field near interface crack tip of double dissimilar orthotropic composite materials 被引量:2
15
作者 李俊林 张少琴 杨维阳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1045-1051,共7页
In this paper, double dissimilar orthotropic composite materials interfacial crack is studied by constructing new stress functions and employing the method of composite material complex. When the characteristic equati... In this paper, double dissimilar orthotropic composite materials interfacial crack is studied by constructing new stress functions and employing the method of composite material complex. When the characteristic equations' discriminants △1 〉 0 and △2 〉0, the theoretical formula of the stress field and the displacement field near the mode I interface crack tip are derived, indicating that there is no oscillation and interembedding between the interfaces of the crack. 展开更多
关键词 orthotropic interface crack crack tip stress field
下载PDF
Mathematical Modelling and 3D FEM Analysis of the Influence of Initial Stresses on the ERR in a Band Crack’s Front in the Rectangular Orthotropic Thick Plate 被引量:2
16
作者 Arzu Turan Dincel Surkay DAkbarov 《Computers, Materials & Continua》 SCIE EI 2017年第3期249-270,共22页
This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initial... This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR. 展开更多
关键词 Band crack energy release rate stress intensity factor initial stress orthotropic material rectangular plate 3D FEM
下载PDF
Measuring Stress Distributions of Orthotropic Composite Material in Plane Stress State by the Lock-in Infrared Thermography Technique 被引量:2
17
作者 LI Xu-Dong WANG Wei-Bo +1 位作者 LI Yong-Sheng WU Dong-Liu 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第6期179-182,共4页
Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint ... Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint structure made of a kind of glass reinforced plastic composite lamination plates under tensile loadings are obtained by the lock-in infrared thermography technique.Feasibility and credibility of using this technique to measure stress distributions of orthotropic composite materials and structures in plane stress state are proved by comparing the results with the data given by the digital speckle correlation method. 展开更多
关键词 TECHNIQUE METHOD orthotropic
下载PDF
Fatigue Crack Propagation Analysis of Orthotropic Steel Bridge with Crack Tip Elastoplastic Consideration 被引量:2
18
作者 Ying Wang Zheng Yan Zhen Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期549-574,共26页
Due to the complex structure and dense weld of the orthotropic steel bridge deck(OSBD),fatigue cracks are prone to occur in the typical welding details.Welding residual stress(WRS)will cause a plastic zone at the crac... Due to the complex structure and dense weld of the orthotropic steel bridge deck(OSBD),fatigue cracks are prone to occur in the typical welding details.Welding residual stress(WRS)will cause a plastic zone at the crack tip.In this paper,an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced,and the extended finite element method(XFEM)was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation.By judging the stress state of the residual stress field at the crack tip and selecting different crack propagation rate models to investigate the crack propagation law when plastic deformation was considered,the propagation path and propagation rate of fatigue crack of the OSBD were obtained.The results show that,whether the residual stress field is considered or not,the plastic deformation at the crack tip will not cause the obvious closure of the fatigue crack at the U-rib toe during the crack propagation process,but will significantly affect the crack propagation path.When material plasticity is considered,the propagation angle of fatigue crack at the U-rib toe basically remains unchanged along the short-axis direction of the initial crack,but is going up along the long-axis direction,and the crack tip plastic zone inhibits the propagation of the crack tip on one side.Compared with linear elastic materials,the crack propagation law considering material plasticity is more consistent with that in actual bridge engineering.In terms of the propagation rate,if the residual stress field is not considered,the fatigue crack propagation rate at U-rib toe with plasticity considered is slightly higher than that without plasticity considered,because plastic deformation will affect the amplitude of energy release rate.When considering the WRS field,the fatigue crack propagation rate at U-rib toe is increased due to the combined actions of plastic deformation and stress ratio R. 展开更多
关键词 Extended finite element fatigue crack propagation orthotropic steel bridge deck welding residual stress plastic deformation
下载PDF
Transient vibration of thin viscoelastic orthotropic plates 被引量:2
19
作者 J.Soukup F.Vale +1 位作者 J.Volek J.Skoilas 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第1期98-107,共10页
This article deals with solutions of transient vibration of a rectangular viscoelastic orthotropic thin 2D plate for particular deformation models according to Flu¨gge and Timoshenko-Mindlin.The linear model,a ge... This article deals with solutions of transient vibration of a rectangular viscoelastic orthotropic thin 2D plate for particular deformation models according to Flu¨gge and Timoshenko-Mindlin.The linear model,a general standard viscoelastic body,of the rheologic properties of a viscoelastic material was applied.The time and coordinate curves of the basic quantities displacement,rotation,velocity,stress and deformation are compared.The results obtained by an approximate analytic method are compared with numerical results for 3D plate generated by FEM application and with experimental investigation. 展开更多
关键词 Transient vibration thin plate orthotropic General viscoelastic standard solid.
下载PDF
Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method 被引量:2
20
作者 M.MOHAMMADIMEHR M.A.MOHAMMADIMEHR P.DASHTI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第4期529-554,共26页
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas... The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications. 展开更多
关键词 biaxial and shear nonlinear buckling analysis nonlocal isotropic and orthotropic micro-plate modified couple stress theory (MCST) surface stress effect differential quadrature method (DQM)
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部