Oryza sativa L. ssp. japonica and indica exhibit different sensitivity to photoinhibition and they show different stability of their core proteins D1 in the chloroplast photosystem Ⅱ. Using in situ hybridization, psb...Oryza sativa L. ssp. japonica and indica exhibit different sensitivity to photoinhibition and they show different stability of their core proteins D1 in the chloroplast photosystem Ⅱ. Using in situ hybridization, psbA, the gene encoding D1 protein of O. sativa ssp. japonica cv. 9516, and that of O. sativa ssp. indica cv. Shanyou 63 was cloned. As revealed by homology comparison of their sequences, the sequences are identical in the regions of promoter and 5′-UTR; differences are found in individual bases in the coding region all of which, being in the third position of respective codons, however, do not affect the amino acids coded finally; a difference is noted in the length of the oligo-U sequence in the region of 3′-UTR. It is thus apparent that, rather than a result of any difference in the amino acid sequences, the differences in the sensitivity to photoinhibition of D1 proteins between japonica and indica rice may be related to the upstream factors that regulate expression of psbA or to differences of photoprotective mechanisms.展开更多
It is one of the key problems for application ofanther culture in hybrid breeding, geneticanalysis, and molecular mapping whether thedoubled haploid (DH) population derived fromanther culture of rice crosses represent...It is one of the key problems for application ofanther culture in hybrid breeding, geneticanalysis, and molecular mapping whether thedoubled haploid (DH) population derived fromanther culture of rice crosses represents a ran-dom array of the microspore population, i.e.whether gametic selection occurs in androgene-sis. A DH population including 132 lines de-展开更多
The major QTL-qSB-9^Tq conferring partial resistance to rice (Oryza sativa L.) sheath blight (Rhizoctonia solani Kvhn) has been verified on chromosome 9 of the indica rice cultivar, Teqing. In this study, the pros...The major QTL-qSB-9^Tq conferring partial resistance to rice (Oryza sativa L.) sheath blight (Rhizoctonia solani Kvhn) has been verified on chromosome 9 of the indica rice cultivar, Teqing. In this study, the prospect of this QTL utilized in molecular breeding program of japonica rice for sheath blight resistance was investigated. Most of the japonica rice cultivars showed lower level of sheath blight resistance than the indica rice cultivars. At the corresponding site of qSB-9^Tq, nine typical japonica rice cultivars from different ecological regions or countries proved to possess the susceptible allele(s). Introgression of qSB-9^Tq into these cultivars enhanced their resistance level by decreasing sheath blight score of 1.0 (0.5-1.3), which indicated that qSB-9^Tq had a large potential in strengthening the resistance of japonica rice to sheath blight. The use of the three molecular markers, which were polymorphic between Teqing and many japonica rice cultivars, promotes the application of qSB-9^Tq in a concrete molecular breeding program.展开更多
On the bases of archaeological discoveries, the earliest domestication of rice has been confirmed in the middle and lower Changjiang River basin, while in the region wild rice populations are found in shallow swamps u...On the bases of archaeological discoveries, the earliest domestication of rice has been confirmed in the middle and lower Changjiang River basin, while in the region wild rice populations are found in shallow swamps under a climate with freezing winter cold. These findings lead us to-examine the past ideas about domestication and differentiation of rice. Historically, in 1930s two sub-species, indica and japonica, were proposed on the basis of sterility in F1 hybrids between them. Soon after that, the two types were classified by the associations of a number of genetically independent traits. The characteristic associations of traits have been explained by the hybrid sterility or reproductive barriers which were assumed to comprise a set of duplicate recessive lethal genes and to be an inner genetic mechanism to lead to the varietal differentiations In 1980s, the hybrid sterility between Indica and Japonica types was analyzed, and Indica, Japonica, and wide-compatibility type which gives fertile hybrids when cross to Indica and Japonica types, are proved to contain an allele, S5', S5' and S5^n, respectively at a locus on chromosome 6. And those gametes having Sj allele are found to be partially aborted in the hybrid genotypes of S5'/S5' while no gamete abortion occurs in S5'/S5^n and S5'/S5^n genotypes. Since then, the gene S5^n has been used in hybrid rice breeding to obtain fertile and vigorous hybrids between subspecies, and the long-disputed problem of hybrid sterility has been solved. Also in such studies the characteristic association of traits found in each of vadetal groups is better explained by founder effects. On the other hand, a large number of native cultivars of rice were surveyed with enzyme polymorphism in 1980s and later with molecular markers. As a result, profound genetic diversity is found in cultivated rice as well as in wild rice. These findings seem to lead us to the idea of multiple independent domestications of rice. However, before reaching such a conclusion, at least two factors, i.e., long-distance-dissemination of some genotypes and the possibilities of introgression by local wild rice to primitive cultivars need to be examined. Taking the two factors as well as the historical events into consideration, it is considered here that the perennial japonica cultivars which are close to wild rice in the Changjiang River basin were disseminated to East India through Assam or along the Bengal Bay, where they were transformed under the introgressions of local wild rice and formed a secondary center, from which some genotypes seem to be disseminated to colonies in Southeast Asia under the influence of Hinduism. Later some of the genotypes were introduced into China and constituted so called Indica type. This may be a reasonable picture for the varietal differentiation.展开更多
Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitr...Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitrogen rate(RNR)of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields.Therefore,a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River,China.Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen.We found that under the same nitrogen application rate,the yield of RTN3 increased by 9.64 and 10.18%in rice varieties NJ9108 and NJ5718,respectively,compared with the farmers’fertilizer practices(FFP).The nitrogen accumulation of RTN3 was the highest at heading stage,at 11.30 t ha^(–1)across 2018 and 2019.Under the same nitrogen application rate,the N agronomic use efficiency(NAE),N physiological efficiency(NPE)and N recovery efficiency(NRE)of RTN3 were 8.1–21.28%,8.51–41.76%and 0.28–14.52%higher than those of the other fertilization modes,respectively.RNR led to decreases in SPAD value,leaf area index(LAI),dry matter accumulation,nitrogen accumulation,and nitrogen use efficiency.These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen,and RNR1 could achieve the goals of saving cost and increasing resource use efficiency.Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.展开更多
Acknowledgement It has been previously established that the BT type of cytoplasmic male sterility (CMS) is induced by high temperatures, while photosensitive genic male sterility (PGMS) seed sets by low temperatur...Acknowledgement It has been previously established that the BT type of cytoplasmic male sterility (CMS) is induced by high temperatures, while photosensitive genic male sterility (PGMS) seed sets by low temperatures induce. In the current study, we have bred photosensitive cytoplasmic male sterility (PCMS) lines (2308SA and 2310SA) by crossing the CMS line with the PGMS japonica line with maintainer genes. The sterility of PCMS japonica was consequently controlled by two groups of male sterile genes resulting from the integration of PGMS and CMS genes. The results on plant fertility, at different sowing times, were as follows: (a) Under conditions of natural long-day photoperiod and at temperatures above 35~C, the PGMS gene regulated PCMS japonica sterility - the higher the temperature, the lower the pollen fertility. However, bagged seed sets of PCMS japonica, not exposed to high temperatures, induced the CMS seed set. (b) Exposure to long-day photoperiod and temperature conditions between 35℃ and the critical sterility inducing temperature of PGMS resulted in both PGMS and CMS gene controlled sterility of PCMS japonica, which exhibited stable characteristics. (c) When exposed to critical sterility inducing temperatures or short-day photoperiod and daily high temperatures below 32℃, the BT type of the CMS gene regulated PCMS sterility. Under these conditions, the PGMS gene rendered male sterility insusceptible to occasional cool summer days when this PCMS line, adopted for hybrid seed production, develops into panicle differentiation stage. The present study also investigated the fertility restoration, seed production and combining ability of PCMS japonica so as to optimize its use.展开更多
Spermidine(Spd) is known to be involved in the regulation of plant responses to chilling stress and counteract the adverse effect of stress conditions.Antioxidant activities,endogenous hormones and ultrastructure ch...Spermidine(Spd) is known to be involved in the regulation of plant responses to chilling stress and counteract the adverse effect of stress conditions.Antioxidant activities,endogenous hormones and ultrastructure change under chilling stress were investigated in indica-japonica hybrid rice seedlings.12-d-old seedlings were subjected to exogenous Spd(1 mmol L^(-1)) and then a chilling stress(6℃,4 d) was induced,followed by a subsequent recovery(25℃,4 d).Results showed that malondialdehyde(MDA) and proline content were enhanced significantly,whereas shoot fresh and dry weights decreased during chilling stress and after recovery;chlorophyll content of chilling-stressed seedlings increased slightly but declined after recovery;additionally,total soluble sugar,sucrose,fructose and starch contents increased significantly during chilling stress,and only soluble sugar and fructose contents were observed in increase after recovery;chilling stress-induced increases in superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) activities,but declined after recovery,and the level of ascorbate peroxidase was lower during chilling stress and after recovery;however,endogenous indole-3-acetic acid(IAA),zeatin riboside(ZR),gibberellic acid(GA_3),and abscisic acid(ABA) levels were induced decreased compared with Spd pretreatment.The microscopic analysis revealed that chilling stress-induced destruction of the chloroplast envelope during chilling stress and increased the number of plastoglobuli along with aberrations in thylakoid membranes after recovery.In contrast,exogenous Spd protected rice seedlings from chilling-induced injuries in terms of lower malondialdehyde,proline and carbohydrates accumulation coupled with increased endogenous hormones metabolism.After recovery,Spd pretreatment chilling-exposed seedlings showed higher activities of antioxidant enzymes and normal physiological function of chloroplasts.These results suggest that Spd could promote effectively chilling tolerance which might be largely attributable to the integrity of cell structure and normal metabolism of endogenous hormones in indica-japonica hybrid rice seedlings.展开更多
Autotetraploid indic, a/japonica rice hybrid combines both the advantages of polyploidy and the heterosis between indica and japonica rice. Embryo sac abortion is an important factor influencing spikelet fertility in ...Autotetraploid indic, a/japonica rice hybrid combines both the advantages of polyploidy and the heterosis between indica and japonica rice. Embryo sac abortion is an important factor influencing spikelet fertility in autotetraploid dce hybrid. To clarify the cytological mechanism of embryo sac abortion, the megasporogenesis and megagametogenesis in an autotetraploid japonicaAndica hybrid were examined by the whole-mount eosin B-staining confocal laser scanning microscopy (WE-CLSM) technique. Abnormalities were observed from the megasporocyte stage to the mature embryo sac stage. The degeneration of the tetrad cells and the functional megaspore was the characteristic of abnormalities during megasporogenesis. Abnormal small embryo sacs and disordered number of nuclei were frequently observed during embryo sac development. Some interesting phenomena, such as two functional megaspores, the diplospory-like megasporocyte, and five-nucleate embryo sac were found. The abnormalities that occurred during female gametophyte development resulted in more than five types of abnormal embryo sacs (i.e. embryo sac degeneration, embryo sac without female germ unit, embryo sac without egg apparatus, embryo sac with abnormal polar nuclei and abnormal small embryo sac) in autotetraploid japonica/ndica hybdd. Embryo sac fertility was lower in diploid japonica/ndica hybdd than in autotetraploid japonicaAndica hybrid although many abnormal phenomena were observed in autotetraploid hybrid.展开更多
We discovered 528 putative cytochrome P450s (P450s) in Oryza sativa L. ssp. indica using Arabidopsis thaliana P450s as database. Those putative rice P450s are thought to belong to 40 families classified in Arabidopsis...We discovered 528 putative cytochrome P450s (P450s) in Oryza sativa L. ssp. indica using Arabidopsis thaliana P450s as database. Those putative rice P450s are thought to belong to 40 families classified in Arabidopsis thaliana. We compared distributions of Arabidopsis thaliana and Oryza sativa P450s and found the two species have similar distribution patterns. However, family distributions of two species also have some differences. For example, in rice, the gene number in families of CYP71, CYP72, CYP76, CYP89, CYP94 and CYP709 is more than twice that in Arabidopsis thaliana; and there are 33 CYP705 members in Arabidopsis thaliana but none in rice. We also found gene members in CYP71 and CYP81 are organized as tandem arrays repeated in the rice genome; maybe they are duplications in the evolutionary event. Furthermore, we accumulated expression sequence tag (EST) evidence for 263 putative rice P450s, which are expressed at transcriptional level and more likely to be true P450s.展开更多
文摘Oryza sativa L. ssp. japonica and indica exhibit different sensitivity to photoinhibition and they show different stability of their core proteins D1 in the chloroplast photosystem Ⅱ. Using in situ hybridization, psbA, the gene encoding D1 protein of O. sativa ssp. japonica cv. 9516, and that of O. sativa ssp. indica cv. Shanyou 63 was cloned. As revealed by homology comparison of their sequences, the sequences are identical in the regions of promoter and 5′-UTR; differences are found in individual bases in the coding region all of which, being in the third position of respective codons, however, do not affect the amino acids coded finally; a difference is noted in the length of the oligo-U sequence in the region of 3′-UTR. It is thus apparent that, rather than a result of any difference in the amino acid sequences, the differences in the sensitivity to photoinhibition of D1 proteins between japonica and indica rice may be related to the upstream factors that regulate expression of psbA or to differences of photoprotective mechanisms.
文摘It is one of the key problems for application ofanther culture in hybrid breeding, geneticanalysis, and molecular mapping whether thedoubled haploid (DH) population derived fromanther culture of rice crosses represents a ran-dom array of the microspore population, i.e.whether gametic selection occurs in androgene-sis. A DH population including 132 lines de-
基金the National High Technology Research and Development Program of China (863 Program) (No. 2006AA10Z165, 2006AA10A103 and 2007AA10Z191)the Ministry of Agriculture of China (No. nyhyzx07-049)the 948 Program (No. 2006-G51).
文摘The major QTL-qSB-9^Tq conferring partial resistance to rice (Oryza sativa L.) sheath blight (Rhizoctonia solani Kvhn) has been verified on chromosome 9 of the indica rice cultivar, Teqing. In this study, the prospect of this QTL utilized in molecular breeding program of japonica rice for sheath blight resistance was investigated. Most of the japonica rice cultivars showed lower level of sheath blight resistance than the indica rice cultivars. At the corresponding site of qSB-9^Tq, nine typical japonica rice cultivars from different ecological regions or countries proved to possess the susceptible allele(s). Introgression of qSB-9^Tq into these cultivars enhanced their resistance level by decreasing sheath blight score of 1.0 (0.5-1.3), which indicated that qSB-9^Tq had a large potential in strengthening the resistance of japonica rice to sheath blight. The use of the three molecular markers, which were polymorphic between Teqing and many japonica rice cultivars, promotes the application of qSB-9^Tq in a concrete molecular breeding program.
文摘On the bases of archaeological discoveries, the earliest domestication of rice has been confirmed in the middle and lower Changjiang River basin, while in the region wild rice populations are found in shallow swamps under a climate with freezing winter cold. These findings lead us to-examine the past ideas about domestication and differentiation of rice. Historically, in 1930s two sub-species, indica and japonica, were proposed on the basis of sterility in F1 hybrids between them. Soon after that, the two types were classified by the associations of a number of genetically independent traits. The characteristic associations of traits have been explained by the hybrid sterility or reproductive barriers which were assumed to comprise a set of duplicate recessive lethal genes and to be an inner genetic mechanism to lead to the varietal differentiations In 1980s, the hybrid sterility between Indica and Japonica types was analyzed, and Indica, Japonica, and wide-compatibility type which gives fertile hybrids when cross to Indica and Japonica types, are proved to contain an allele, S5', S5' and S5^n, respectively at a locus on chromosome 6. And those gametes having Sj allele are found to be partially aborted in the hybrid genotypes of S5'/S5' while no gamete abortion occurs in S5'/S5^n and S5'/S5^n genotypes. Since then, the gene S5^n has been used in hybrid rice breeding to obtain fertile and vigorous hybrids between subspecies, and the long-disputed problem of hybrid sterility has been solved. Also in such studies the characteristic association of traits found in each of vadetal groups is better explained by founder effects. On the other hand, a large number of native cultivars of rice were surveyed with enzyme polymorphism in 1980s and later with molecular markers. As a result, profound genetic diversity is found in cultivated rice as well as in wild rice. These findings seem to lead us to the idea of multiple independent domestications of rice. However, before reaching such a conclusion, at least two factors, i.e., long-distance-dissemination of some genotypes and the possibilities of introgression by local wild rice to primitive cultivars need to be examined. Taking the two factors as well as the historical events into consideration, it is considered here that the perennial japonica cultivars which are close to wild rice in the Changjiang River basin were disseminated to East India through Assam or along the Bengal Bay, where they were transformed under the introgressions of local wild rice and formed a secondary center, from which some genotypes seem to be disseminated to colonies in Southeast Asia under the influence of Hinduism. Later some of the genotypes were introduced into China and constituted so called Indica type. This may be a reasonable picture for the varietal differentiation.
基金the National Key Research and Development Program of China(2018YFD0300802 and 2016YFD0200805)the Key Research Program of Jiangsu Province,China(BE2017343 and BE2018362)。
文摘Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitrogen rate(RNR)of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields.Therefore,a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River,China.Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen.We found that under the same nitrogen application rate,the yield of RTN3 increased by 9.64 and 10.18%in rice varieties NJ9108 and NJ5718,respectively,compared with the farmers’fertilizer practices(FFP).The nitrogen accumulation of RTN3 was the highest at heading stage,at 11.30 t ha^(–1)across 2018 and 2019.Under the same nitrogen application rate,the N agronomic use efficiency(NAE),N physiological efficiency(NPE)and N recovery efficiency(NRE)of RTN3 were 8.1–21.28%,8.51–41.76%and 0.28–14.52%higher than those of the other fertilization modes,respectively.RNR led to decreases in SPAD value,leaf area index(LAI),dry matter accumulation,nitrogen accumulation,and nitrogen use efficiency.These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen,and RNR1 could achieve the goals of saving cost and increasing resource use efficiency.Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.
基金This study was supported by the grants from the National 863 Program of China(200lAA211l7l,2002AA207001 and 2004AA2l109l1)National Sci-Tech Achievement Transformation Foundation of China(03EFN 2l6900283).
文摘Acknowledgement It has been previously established that the BT type of cytoplasmic male sterility (CMS) is induced by high temperatures, while photosensitive genic male sterility (PGMS) seed sets by low temperatures induce. In the current study, we have bred photosensitive cytoplasmic male sterility (PCMS) lines (2308SA and 2310SA) by crossing the CMS line with the PGMS japonica line with maintainer genes. The sterility of PCMS japonica was consequently controlled by two groups of male sterile genes resulting from the integration of PGMS and CMS genes. The results on plant fertility, at different sowing times, were as follows: (a) Under conditions of natural long-day photoperiod and at temperatures above 35~C, the PGMS gene regulated PCMS japonica sterility - the higher the temperature, the lower the pollen fertility. However, bagged seed sets of PCMS japonica, not exposed to high temperatures, induced the CMS seed set. (b) Exposure to long-day photoperiod and temperature conditions between 35℃ and the critical sterility inducing temperature of PGMS resulted in both PGMS and CMS gene controlled sterility of PCMS japonica, which exhibited stable characteristics. (c) When exposed to critical sterility inducing temperatures or short-day photoperiod and daily high temperatures below 32℃, the BT type of the CMS gene regulated PCMS sterility. Under these conditions, the PGMS gene rendered male sterility insusceptible to occasional cool summer days when this PCMS line, adopted for hybrid seed production, develops into panicle differentiation stage. The present study also investigated the fertility restoration, seed production and combining ability of PCMS japonica so as to optimize its use.
基金supported by grants from the the Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-01-09B)the Natural Science Foundation of Zhejiang Province,China(Y13C130013)the Special Fund for Basic Scientific Research Business of Central Public Research Institutes,Chinese Academy of Agricultural Sciences(2012RG004-2)
文摘Spermidine(Spd) is known to be involved in the regulation of plant responses to chilling stress and counteract the adverse effect of stress conditions.Antioxidant activities,endogenous hormones and ultrastructure change under chilling stress were investigated in indica-japonica hybrid rice seedlings.12-d-old seedlings were subjected to exogenous Spd(1 mmol L^(-1)) and then a chilling stress(6℃,4 d) was induced,followed by a subsequent recovery(25℃,4 d).Results showed that malondialdehyde(MDA) and proline content were enhanced significantly,whereas shoot fresh and dry weights decreased during chilling stress and after recovery;chlorophyll content of chilling-stressed seedlings increased slightly but declined after recovery;additionally,total soluble sugar,sucrose,fructose and starch contents increased significantly during chilling stress,and only soluble sugar and fructose contents were observed in increase after recovery;chilling stress-induced increases in superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) activities,but declined after recovery,and the level of ascorbate peroxidase was lower during chilling stress and after recovery;however,endogenous indole-3-acetic acid(IAA),zeatin riboside(ZR),gibberellic acid(GA_3),and abscisic acid(ABA) levels were induced decreased compared with Spd pretreatment.The microscopic analysis revealed that chilling stress-induced destruction of the chloroplast envelope during chilling stress and increased the number of plastoglobuli along with aberrations in thylakoid membranes after recovery.In contrast,exogenous Spd protected rice seedlings from chilling-induced injuries in terms of lower malondialdehyde,proline and carbohydrates accumulation coupled with increased endogenous hormones metabolism.After recovery,Spd pretreatment chilling-exposed seedlings showed higher activities of antioxidant enzymes and normal physiological function of chloroplasts.These results suggest that Spd could promote effectively chilling tolerance which might be largely attributable to the integrity of cell structure and normal metabolism of endogenous hormones in indica-japonica hybrid rice seedlings.
基金supported by the National Science Foundation of China(Grant No.30771328)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education,China
文摘Autotetraploid indic, a/japonica rice hybrid combines both the advantages of polyploidy and the heterosis between indica and japonica rice. Embryo sac abortion is an important factor influencing spikelet fertility in autotetraploid dce hybrid. To clarify the cytological mechanism of embryo sac abortion, the megasporogenesis and megagametogenesis in an autotetraploid japonicaAndica hybrid were examined by the whole-mount eosin B-staining confocal laser scanning microscopy (WE-CLSM) technique. Abnormalities were observed from the megasporocyte stage to the mature embryo sac stage. The degeneration of the tetrad cells and the functional megaspore was the characteristic of abnormalities during megasporogenesis. Abnormal small embryo sacs and disordered number of nuclei were frequently observed during embryo sac development. Some interesting phenomena, such as two functional megaspores, the diplospory-like megasporocyte, and five-nucleate embryo sac were found. The abnormalities that occurred during female gametophyte development resulted in more than five types of abnormal embryo sacs (i.e. embryo sac degeneration, embryo sac without female germ unit, embryo sac without egg apparatus, embryo sac with abnormal polar nuclei and abnormal small embryo sac) in autotetraploid japonica/ndica hybdd. Embryo sac fertility was lower in diploid japonica/ndica hybdd than in autotetraploid japonicaAndica hybrid although many abnormal phenomena were observed in autotetraploid hybrid.
文摘We discovered 528 putative cytochrome P450s (P450s) in Oryza sativa L. ssp. indica using Arabidopsis thaliana P450s as database. Those putative rice P450s are thought to belong to 40 families classified in Arabidopsis thaliana. We compared distributions of Arabidopsis thaliana and Oryza sativa P450s and found the two species have similar distribution patterns. However, family distributions of two species also have some differences. For example, in rice, the gene number in families of CYP71, CYP72, CYP76, CYP89, CYP94 and CYP709 is more than twice that in Arabidopsis thaliana; and there are 33 CYP705 members in Arabidopsis thaliana but none in rice. We also found gene members in CYP71 and CYP81 are organized as tandem arrays repeated in the rice genome; maybe they are duplications in the evolutionary event. Furthermore, we accumulated expression sequence tag (EST) evidence for 263 putative rice P450s, which are expressed at transcriptional level and more likely to be true P450s.