期刊文献+
共找到1,872篇文章
< 1 2 94 >
每页显示 20 50 100
Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes 被引量:9
1
作者 Ying Yang Haiyong Ao +5 位作者 Yugang Wang Wentao Lin Shengbing Yang Shuhong Zhang Zhifeng Yu Tingting Tang 《Bone Research》 SCIE CAS CSCD 2016年第3期140-153,共14页
Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hyd... Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methiciUin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections. 展开更多
关键词 NT Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes HACC
下载PDF
How mesenchymal stem cells transform into adipocytes:Overview of the current understanding of adipogenic differentiation
2
作者 Shan-Shan Liu Xiang Fang +5 位作者 Xin Wen Ji-Shan Liu Miribangvl Alip Tian Sun Yuan-Yuan Wang Hong-Wei Chen 《World Journal of Stem Cells》 SCIE 2024年第3期245-256,共12页
Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two s... Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes,in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes.Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis.However,the mechanism underlying the adipogenic differentiation of MSCs is not fully understood.Here,the current knowledge of adipogenic differentiation in MSCs is reviewed,focusing on signaling pathways,noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation.Finally,the relationship between maladipogenic differentiation and diseases is briefly discussed.We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes. 展开更多
关键词 Mesenchymal stem cell adipogenic differentiation Signaling pathway Noncoding RNA Epigenetic regulation
下载PDF
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
3
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION osteogenic differentiation Bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
Adipokines regulate mesenchymal stem cell osteogenic differentiation 被引量:1
4
作者 Zhong-Hua Xu Chen-Wei Xiong +5 位作者 Kai-Song Miao Zhen-Tang Yu Jun-Jie Zhang Chang-Lin Yu Yong Huang Xin-Die Zhou 《World Journal of Stem Cells》 SCIE 2023年第6期502-513,共12页
Mesenchymal stem cells(MSCs)can differentiate into various tissue cell types including bone,adipose,cartilage,and muscle.Among those,osteogenic differentiation of MSCs has been widely explored in many bone tissue engi... Mesenchymal stem cells(MSCs)can differentiate into various tissue cell types including bone,adipose,cartilage,and muscle.Among those,osteogenic differentiation of MSCs has been widely explored in many bone tissue engineering studies.Moreover,the conditions and methods of inducing osteogenic differentiation of MSCs are continuously advancing.Recently,with the gra-dual recognition of adipokines,the research on their involvement in different pathophysiological processes of the body is also deepening including lipid metabolism,inflammation,immune regulation,energy disorders,and bone homeostasis.At the same time,the role of adipokines in the osteogenic differentiation of MSCs has been gradually described more completely.Therefore,this paper reviewed the evidence of the role of adipokines in the osteogenic differentiation of MSCs,emphasizing bone formation and bone regeneration. 展开更多
关键词 Mesenchymal stem cells ADIPOKINES Adipose tissue osteogenic differentiation OSTEOGENESIS Bone regeneration
下载PDF
Stimulating factors for regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells
5
作者 Jia-Qi Zhou Hao-Yang Wan +1 位作者 Zi-Xuan Wang Nan Jiang 《World Journal of Stem Cells》 SCIE 2023年第5期369-384,共16页
Mesenchymal stem cells(MSCs),distributed in many tissues in the human body,are multipotent cells capable of differentiating in specific directions.It is usually considered that the differentiation process of MSCs depe... Mesenchymal stem cells(MSCs),distributed in many tissues in the human body,are multipotent cells capable of differentiating in specific directions.It is usually considered that the differentiation process of MSCs depends on specialized external stimulating factors,including cell signaling pathways,cytokines,and other physical stimuli.Recent findings have revealed other underrated roles in the differentiation process of MSCs,such as material morphology and exosomes.Although relevant achievements have substantially advanced the applicability of MSCs,some of these regulatory mechanisms still need to be better understood.Moreover,limitations such as long-term survival in vivo hinder the clinical application of MSCs therapy.This review article summarizes current knowledge regarding the differentiation patterns of MSCs under specific stimulating factors. 展开更多
关键词 Mesenchymal stem cells DIFFERENTIATION osteogenic Chondrogenic Literature review
下载PDF
A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells(BMSCs)
6
作者 WENQI CHEN XIAOYANG CHU +6 位作者 YANG ZENG YOUSHENG YAN YIPENG WANG DONGLAN SUN DONGLIANG ZHANG JING ZHANG KAI YANG 《BIOCELL》 SCIE 2023年第7期1561-1569,共9页
Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study... Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS. 展开更多
关键词 Bone marrow mesenchymal stem cells ROR2 WNT5A osteogenic differentiation SPHINGOMYELIN
下载PDF
MicroRNA-584-5p/RUNX family transcription factor 2 axis mediates hypoxia-induced osteogenic differentiation of periosteal stem cells
7
作者 Jia-Jia Lu Xiao-Jian Shi +3 位作者 Qiang Fu Yong-Chuan Li Lei Zhu Nan Lu 《World Journal of Stem Cells》 SCIE 2023年第10期979-988,共10页
BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM... BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia. 展开更多
关键词 Periosteal stem cell osteogenic differentiation RUNX family transcription factor 2 MiroRNA-584-5p
下载PDF
Exploring the Mechanism of CircRNA-vgll3 in Osteogenically Differentiated Human Bone Marrow Mesenchymal Stem Cells
8
作者 Yajie Huo Yu Mao +9 位作者 Fang Luo Fengjiao Zhang Lifang Xie Xiaoke Zhang Kai Liu Ling Sun Hongmei Liu Lige Song Huanhuan Wang Zhiqiang Kang 《Journal of Clinical and Nursing Research》 2023年第4期151-158,共8页
Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high... Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein. 展开更多
关键词 CircRNA-vgll3 osteogenic differentiation Human bone marrow mesenchymal stem cells Mechanism of action
下载PDF
ISOLATION AND INDUCTION OF DIFFERENTIATION OF SEINE ADIPOSE-DERIVED MESENCHYMAL STEM CELLS
9
作者 MA Yueying YUAN Shuolong +5 位作者 ZHANG yue XU liangwei GUO Weiwei ZHAO Lidong ZHAI suoqiang YANG Shiming 《Journal of Otology》 2014年第2期101-105,共5页
Objectives To establish a method for high yield mesenchymal stem cells collection, as well as a culture method for iden- tifying mesenchymal stem cells from the swine adipose-derived mesenchymal stem cell (ADMSC). M... Objectives To establish a method for high yield mesenchymal stem cells collection, as well as a culture method for iden- tifying mesenchymal stem cells from the swine adipose-derived mesenchymal stem cell (ADMSC). Methods Swine AD- MSCs were isolated from fat tissue with collagenase, followed by induction of differentiation to osteogenic, adipogenic and chondrogrnic cells. The survival curve of the ADMSC at the 37℃ and 38℃ were measured using WST-1 Cell Proliferation Assay Reagent. Result ADMSCs isolated with collagenase from swine neck fat tissue generated a stable uniform appearance af- ter the second generation. The passage period was five days. ADMSC could differentiate into osteogenic, adipogenic or chon- drogrnic cells under different culture conditions. The highest growth rate was achieved at 38℃in this study. Conclusion Swine ADMSCs have the potential to differentiate into osteogenic, adipogenic or chondrogrnic cells, and they may be appropriate for transplantation for both research and clinical purpose. 展开更多
关键词 Adipose-derived mesenchymal stem cell DIFFERENTIATION Transplantation osteogenic cell adipogenic cell chondrogrnic cell
下载PDF
miR-103-3p regulates the differentiation of bone marrow mesenchymal stem cells in myelodysplastic syndrome
10
作者 NINGYU LI XIAOFANG CHEN +8 位作者 SUXIA GENG PEILONG LAI LISI HUANG MINMING LI XIN HUANG CHENGXIN DENG YULIAN WANG JIANYU WENG XIN DU 《BIOCELL》 SCIE 2023年第1期133-141,共9页
The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and ... The pathogenesis of myelodysplastic syndrome(MDS)may be related to the abnormal expression of microRNAs(miRNAs),which could influence the differentiation capacity of mesenchymal stem cells(MSCs)towards adipogenic and osteogenic lineages.In this study,exosomes from bone marrow plasma were successfully extracted and identified.Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its 0.52-fold downregulation in patients with MDS compared with controls(NOR)and was downregulated 0.55-fold in MDS-MSCs compared with NOR-MSCs.Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic differentiation and decreased adipogenic differentiation in vitro,while inhibition of miR-103-3p showed the opposite results in NOR-MSCs.Thus,the expression of miR-103-3p decreases in MDS BM plasma and MDS-MSCs,significantly impacting MDS-MSCs differentiation.The miR-103-3p mimics may boost MDS-MSCs osteogenic differentiation while weakening lipid differentiation,thereby providing possible target for the treatment of MDS pathogenesis. 展开更多
关键词 Myelodysplastic syndrome Mesenchymal stem cells miR-103-3p osteogenic differentiation adipogenic differentiation
下载PDF
Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells?
11
作者 Madhan Jeyaraman Tushar Verma +3 位作者 Naveen Jeyaraman Bishnu Prasad Patro Arulkumar Nallakumarasamy Manish Khanna 《World Journal of Methodology》 2023年第2期10-17,共8页
Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified ... Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings.MSCs can stimulate and promote osseous regeneration.Due to the difference in the development of long bones and craniofacial bones,the mandibular-derived MSCs(M-MSCs)have distinct differentiation characteristics as compared to that of long bones.Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73,-105,and-106,stage-specific embryonic antigen 4 and Octamer-4,and negative for hematopoietic markers such as CD-14. 展开更多
关键词 MANDIBLE Long bone Mesenchymal stromal cells osteogenic potential REGENERATION
下载PDF
Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate 被引量:5
12
作者 Jyun-Yi Wu Chia-Hsin Chen +3 位作者 Li-Yin Yeh Ming-Long Yeh Chun-Chan Ting Yan-Hsiung Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2013年第2期85-91,共7页
Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the... Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration. 展开更多
关键词 cell proliferation cyclic adenosine monophosphate human periodontal ligament cells low-power laser irradiation osteogenic differentiation
下载PDF
Overview of noncoding RNAs involved in the osteogenic differentiation of periodontal ligament stem cells 被引量:8
13
作者 Wei Qiu Bu-Ling Wu Fu-Chun Fang 《World Journal of Stem Cells》 SCIE CAS 2020年第4期251-265,共15页
Periodontal diseases are infectious diseases that are characterized by progressive damage to dental support tissue.The major goal of periodontal therapy is to regenerate the periodontium destroyed by periodontal disea... Periodontal diseases are infectious diseases that are characterized by progressive damage to dental support tissue.The major goal of periodontal therapy is to regenerate the periodontium destroyed by periodontal diseases.Human periodontal ligament(PDL)tissue possesses periodontal regenerative properties,and periodontal ligament stem cells(PDLSCs)with the capacity for osteogenic differentiation show strong potential in clinical application for periodontium repair and regeneration.Noncoding RNAs(ncRNAs),which include a substantial portion of poly-A tail mature RNAs,are considered“transcriptional noise.”Recent studies show that ncRNAs play a major role in PDLSC differentiation;therefore,exploring how ncRNAs participate in the osteogenic differentiation of PDLSCs may help to elucidate the underlying mechanism of the osteogenic differentiation of PDLSCs and further shed light on the potential of stem cell transplantation for periodontium regeneration.In this review paper,we discuss the history of PDLSC research and highlight the regulatory mechanism of ncRNAs in the osteogenic differentiation of PDLSCs. 展开更多
关键词 Noncoding RNAS PERIODONTAL regeneration PERIODONTAL LIGAMENT stem cells osteogenic DIFFERENTIATION
下载PDF
Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures 被引量:3
14
作者 Florian Bohrnsen Henning Schliephake 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第4期223-230,共8页
Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of ... Sites of implantation with compromised biology may be unable to achieve the required level of angiogenic and osteogenic regeneration. The specific function and contribution of different cell types to the formation of prevascularized, osteogenic networks in co-culture remains unclear. To determine how bone marrow-derived mesenchymal stromal cells (BMSCs) and endothelial cells (ECs) contribute to cellular proangiogenic differentiation, we analysed the differentiation of BMSCs and ECs in standardized monolayer, Transwell and co-cultures. BMSCs were derived from the iliac bone marrow of five patients, characterized and differentiated in standardized monolayers, permeable Transwells and co-cultures with human umbilical vein ECs (HUVECs). The expression levels of CD31, von Willebrand factor, osteonectin (ON) and Runx2 were assessed by quantitative reverse transcriptase polymerase chain reaction. The protein expression of alkaline phosphatase, ON and CD31 was demonstrated via histochemical and immunofluorescence analysis. The results showed that BMSCs and HUVECs were able to retain their lineage-specific osteogenic and angiogenic differentiation in direct and indirect co-cultures. In addition, BMSCs demonstrated a supportive expression of angiogenic function in co-culture, while HUVEC was able to improve the expression of osteogenic marker molecules in BMSCs. 展开更多
关键词 angiogenic CO-CULTURE differentiation endothelial cell mesenchymal stromal cell osteogenic
下载PDF
Osteogenic Effect of Low Intensity Pulsed Ultrasound on Rat Adipose-derived Stem Cells in vitro 被引量:5
15
作者 江渟 许涛 +3 位作者 郭风劲 陈安民 肖铮铮 张迪 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第1期75-81,共7页
The osteogenic in vitro effect of low intensity pulsed ultrasound (LIPUS) on SD rat adi-pose-derived stem cells (ADSCs) was investigated.Rat ADSCs underwent LIPUS (intensity=100 mW/cm2) or sham exposure for 8 min per ... The osteogenic in vitro effect of low intensity pulsed ultrasound (LIPUS) on SD rat adi-pose-derived stem cells (ADSCs) was investigated.Rat ADSCs underwent LIPUS (intensity=100 mW/cm2) or sham exposure for 8 min per treatment once everyday in vitro,and then the alkaline phos-phatase (ALP) activity and mineralized nodule formation were assessed to evaluate the osteogenic effect of LIPUS on ADSCs.To further explore the underlying mechanism,the osteogenic-related gene mRNA expression was determined by using reverse transcriptase-polymerase chain reaction (RT-PCR) at 1st,3rd,5th,7th day after exposure repectively.Westen blot was used to evaluate the protein expression levels of two osteogenic differentiation associated genes at 7th and 14th day repectively.It was found that ALP activity was increased after LIPUS exposure and LIPUS resulted in mineralized nodule formation of ADSCs in vitro.LIPUS-treated ADSCs displayed higher mRNA expression levels of runt-related transcription factor 2 (Runx2),osteocalcin (OCN),ALP and bone sialoprotein (BSP) genes than con-trols,and the protein levels of Runx2 and BSP were also increased.The results suggested that LIPUS may induce the osteogenic differentiation of ADSCs in vitro. 展开更多
关键词 low intensity pulsed ultrasound adipose-derived stem cells osteogenic differentiation
下载PDF
Lysine-specific demethylase 1 inhibitor rescues the osteogenic ability of mesenchymal stem cells under osteoporotic conditions by modulating H3K4 methylation 被引量:12
16
作者 Longwei Lv Wenshu Ge +4 位作者 Yunsong Liu Guanyou Lai Hao Liu Wenyue Li Yongsheng Zhou 《Bone Research》 SCIE CAS CSCD 2016年第4期217-231,共15页
Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulatio... Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulation plays an important role in the developmental origins of osteoporosis; however, few studies have investigated the potential of epigenetic therapy to improve or rescue the osteogenic ability of bone marrow mesenchymal stem cells(BMMSCs) under osteoporotic conditions. Here, we investigated pargyline, an inhibitor of lysine-specific demethylase 1(LSD1), which mainly catalyzes the demethylation of the di- and mono-methylation of H3K4. We demonstrated that 1.5 mmol·Lpargyline was the optimal concentration for the osteogenic differentiation of human BMMSCs. Pargyline rescued the osteogenic differentiation ability of mouse BMMSCs under osteoporotic conditions by enhancing the dimethylation level of H3K4 at the promoter regions of osteogenesis-related genes. Moreover, pargyline partially rescued or prevented the osteoporotic conditions in aged or ovariectomized mouse models, respectively. By introducing the concept of epigenetic therapy into the field of osteoporosis, this study demonstrated that LSD1 inhibitors could improve the clinical practice of MSC-based bone tissue engineering and proposes their novel use to treat osteoporosis. 展开更多
关键词 Lysine-specific demethylase 1 inhibitor rescues the osteogenic ability of mesenchymal stem cells under osteoporotic conditions by modulating H3K4 methylation OM stem BMD
下载PDF
The Osteogenic Capacity of Human Amniotic Membrane Mesenchymal Stem Cell (hAMSC) and Potential for Application in Maxillofacial Bone Reconstruction <i>in Vitro</i>Study 被引量:2
17
作者 David B. Kamadjaja Purwati   +2 位作者 Fedik A. Rantam Ferdiansyah   Coen Pramono 《Journal of Biomedical Science and Engineering》 2014年第8期497-503,共7页
Amniotic membrane of human placenta is a source of abundant mesenchymal stem cell (hAMSC) which makes it a potential source of allogeneic multipotent cell for bone healing. However, much has to be explored about its i... Amniotic membrane of human placenta is a source of abundant mesenchymal stem cell (hAMSC) which makes it a potential source of allogeneic multipotent cell for bone healing. However, much has to be explored about its isolation procedure and the osteogenic differentiation potential. The aims of this study are to establish the procurement procedure of human amniotic membrane, the isolation and culture of hAMSC, the MSC phenotypic characterization, and the in vitro osteogenic differentiation of hAMSC. Results of the study are as follows. The quality of human amniotic membrane would be best if procured from Caesarean operation under highly aseptic condition to avoid fungal and bacterial contamination on the culture. Isolation procedure using modified Soncini protocol yielded large amount of MSC with high proliferative capacity in culture medium. Characterization of hAMSC showed that the majority of the target cells exhibited specific MSC markers (CD105 and CD90) with a small number of these cells expressing CD45, the marker of hematopoeitic cells. The in vitro osteogenic differentiation of hAMSC followed by Alizarin Red staining showed that osteoblastic differentiation was detected in a significantly high number of cells. This study concludes that hAMSCs isolated from human amniotic membrane have the capacity for in vitro osteogenesis which makes them be one of the potential allogeneic stem cells for application in maxillofacial bone reconstruction. 展开更多
关键词 Human Amniotic Membrane Mesenchymal STEM cells Modified Soncini Protocol MSC Phenotypic Characterization osteogenic Differentiation ALLOGENEIC STEM cell MAXILLOFACIAL Bone Reconstruction
下载PDF
<i>Trapa japonica</i>Flerov Extract Attenuates Lipid Accumulation through Downregulation of Adipogenic Transcription Factors in 3T3-L1 Cells 被引量:1
18
作者 Mi Jin Kim Kyung Ran Im Kyung-Sup Yoon 《American Journal of Molecular Biology》 2015年第2期32-41,共10页
Obesity is a major human health problem associated with various diseases, including cardiac injury and type 2 diabetes. Trapa japonica Flerov (TJF) has been used in traditional oriental medicine to treat diabetes. In ... Obesity is a major human health problem associated with various diseases, including cardiac injury and type 2 diabetes. Trapa japonica Flerov (TJF) has been used in traditional oriental medicine to treat diabetes. In this study, we evaluated the inhibitory effect of and the mechanism underlying the effect of TJF extract on adipogenesis in 3T3-L1 cells. The effects of TJF extract on cell viability were analyzed using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, and the anti-adipogenic effect was measured by oil red O staining. The expression of peroxisomal proliferator activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-α (C/EBP)α, adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), adiponectin, and fatty acid binding protein (FABP)4 involved in adipogenesis was determined by western blot analysis. TJF extract effectively inhibited lipid accumulation and the expression of PPARγ and C/EBPα in 3T3-L1 cells. TJF also increased the phosphorylation of AMPK and ACC, and decreased the expression of adiponectin and FABP4. These results indicate that TJF extract exerts its anti-obesity effect through the downregulation of adipogenic transcription factors and adipogenic marker genes. 展开更多
关键词 3T3-L1 cells adipogenic Transcription Factors Lipid Accumulation TRAPA JAPONICA Flerov EXTRACT
下载PDF
circ_0003204 regulates the osteogenic differentiation of human adipose-derived stem cells via miR-370-3p/HDAC4 axis 被引量:1
19
作者 Liyuan Yu Kai Xia +5 位作者 Jing Zhou Zhiai Hu Xing Yin Chenchen Zhou Shujuan Zou Jun Liu 《International Journal of Oral Science》 SCIE CAS CSCD 2022年第3期360-370,共11页
Human adipose-derived stem cells(hASCs)are a promising cell type for bone tissue regeneration.Circular RNAs(circRNAs)have been shown to play a critical role in regulating various cell differentiation and involve in me... Human adipose-derived stem cells(hASCs)are a promising cell type for bone tissue regeneration.Circular RNAs(circRNAs)have been shown to play a critical role in regulating various cell differentiation and involve in mesenchymal stem cell osteogenesis.However,how circRNAs regulate hASCs in osteogenesis is still unclear.Herein,we found circ_0003204 was significantly downregulated during osteogenic differentiation of hASCs.Knockdown of circ_0003204 by si RNA or overexpression by lentivirus confirmed circ_0003204 could negatively regulate the osteogenic differentiation of hASCs.We performed dual-luciferase reporting assay and rescue experiments to verify circ_0003204 regulated osteogenic differentiation via sponging miR-370-3p.We predicted and confirmed that miR-370-3p had targets in the 3′-UTR of HDAC4 m RNA.The following rescue experiments indicated that circ_0003204 regulated the osteogenic differentiation of hASCs via miR-370-3p/HDAC4 axis.Subsequent in vivo experiments showed the silencing of circ_0003204 increased the bone formation and promoted the expression of osteogenic-related proteins in a mouse bone defect model,while overexpression of circ_0003204 inhibited bone defect repair.Our findings indicated that circ_0003204 might be a promising target to promote the efficacy of hASCs in repairing bone defects. 展开更多
关键词 regulates the osteogenic differentiation of human adipose-derived stem cells via miR-370-3p/HDAC4 axis MIR
下载PDF
Osteogenic Potential of Cultured Bone Marrow Stromal Cells Transfected with Transforming Growth Factor β_1 Gene in vitro
20
作者 易诚青 郑启新 +1 位作者 郭晓东 刘勇 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2001年第2期130-133,共4页
To study the osteogenic potential of cultured bone marrow stromal cells transfected with transforming growth factor β 1 gene in vitro , cultured BMSCs were transfected with the complexes of pcDNA 3 TGF β ... To study the osteogenic potential of cultured bone marrow stromal cells transfected with transforming growth factor β 1 gene in vitro , cultured BMSCs were transfected with the complexes of pcDNA 3 TGF β 1 and Lipofectamine Reagent in vitro . The cell proliferation was detected by MTT method and the morphological features of transfected BMSCs was observed. ALP stains and PNP method were used to measure ALP activity. In addition, the collagen type Ⅰ propeptides and mineralized matrixes were examined by immunohistochemical staining and tetracycline fluorescence labeling respectively. The morphological and biological characters of the transfected BMSCs were similar to those of osteoblasts and the cell proliferation was promoted. The cell layer displayed strong positive reaction for ALP stains and immunohistochemical staining. ALP activity and collagen type Ⅰ expression increased remarkably after transfection. Mineralized matrixes formed earlier and more in transfected BMSCs as compared with control group. It is concluded that transfecting with TGF β 1 gene could promote the osteogenic potential of cultured BMSCs. 展开更多
关键词 transforming growth factor β 1 gene transfection bone marrow stromal cells osteogenic potential
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部