We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the int...We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.展开更多
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp...In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.展开更多
Simultaneously realizing improved activity and stability of acidic oxygen evolution reaction(OER) electrocatalysts is highly promising for developing cost-effective sustainable energy in the splitting of water techniq...Simultaneously realizing improved activity and stability of acidic oxygen evolution reaction(OER) electrocatalysts is highly promising for developing cost-effective sustainable energy in the splitting of water technique.Herein,we report iridium nanocrystals embedded into 3D conductive clothes(Ir-NCT/CC) as a low iridium electrocatalyst realizing ultrahigh acidic OER activity and robust stability.The well-designed Ir-NCT/CC requires a low overpotential of 202 mV to reach the current density of 10 mA cm^(-2)with a high mass activity of 1754 A g^(-1).Importantly,in acidic overall water splitting,Ir-NCT/CC merely delivers a cell voltage of 1.469 V at a typical current density of 10 mA cm^(-2)and also maintains robust durability under continuous operation.We identify that a low working voltage drives the formation of a highly stable amorphous IrOxactive phase over the surface of Ir nanocrystals(surface heterojunction IrOx/Ir-NCT) during operating conditions,which contributes to an effective and durable OER process.展开更多
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e...Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.展开更多
Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.How...Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.展开更多
Monoclinic BiVO_(4) is a widely researched semiconductor in solar water splitting owing to its suitable characteristics. However, BiVO_(4) faces limitations, such as the inefficient separation and transportation of ph...Monoclinic BiVO_(4) is a widely researched semiconductor in solar water splitting owing to its suitable characteristics. However, BiVO_(4) faces limitations, such as the inefficient separation and transportation of photogenerated charges in the bulk and poor catalytic water oxidation reactions at the surface that affect the water-splitting efficiency. In this work, the Cs intercalation strategy at the surface of BiVO_(4) is proposed for the enhanced water splitting to H_(2) and O_(2) productions via the effective separation and transportation photogenerated charges and improved surface catalytic water oxidation reactions. The Cs ions are found to intercalate at the surface of BiVO_(4) and regulate the oxygen vacancies to provide active O_(2) production sites and stability. The surface intercalation of Cs boosts the photocurrent to 1.89 mA cm^(-2)at 1.23 V vs.reference hydrogen electrode(RHE). A stoichiometric evolution of H_(2) and O_(2) is recorded with a faradaic efficiency of 92%. The open-circuit voltage measurements confirmed the increase in the carrier lifetime with the work function tuning upon Cs intercalation. The proposed Cs intercalation strategy suggests an effective route to suppress the charge recombination with an increase in carrier lifetime and charge separation in BiVO_(4) for the enhanced PEC application.展开更多
Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest ...Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.展开更多
The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. T...The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.展开更多
The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we co...The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we consider an IRS assisted SR system where the IRS operates under power splitting(PS)mode.We aim at minimizing the IRS power consumption for the ST under the quality of service constraints for both primary and secondary transmissions by optimizing the transmit beamforming,the reflect beamforming and the PS factor.The optimization problem is non-convex.To tackle it,an algorithm is proposed by employing the block coordinate descent,semidefinite relaxation and alternating direction method of multipliers techniques.Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.展开更多
Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catal...Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catalysts present effective alternatives due to the diverse valence states,adjustable electronic structures,and plentiful components.In this review,the catalytic mechanisms of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)for electrocatalytic water splitting are described.Then,the synthesis strategies of various cobalt-based catalysts are systematically summarized,followed by the relationships between the structure and performance clarified.Subsequently,the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed.Furthermore,the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations.Finally,we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.展开更多
In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with ...Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.展开更多
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surfa...To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.展开更多
Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode ...Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode is manufactured by depositing plasmonic nanoparticles of the non-noble metal Al on the surface of a TiO2/Cu2O core/shell heterojunction for the first time.The Al nanoparticles,which exhibit a surface plasmon resonance(SPR)effect and are substantially less expensive than noble metals such as Au and Ag,generate hot electron-hole pairs and amplify the electromagnetic field at the interface under illumination.The as-prepared TiO2/Cu2O/Al/Al2O3 photoelectrodes have an extended absorption range and enhanced carrier separation and transfer.Their photocurrent density of 4.52 mA·cm^-2 at 1.23 V vs.RHE represents an 1.84-fold improvement over that of TiO2/Cu2O.Specifically,the ultrathin Al2O3 passivation layer spontaneously generated on the surface of Al in air could act as a protective layer to significantly increase its stability.In this work,the synergistic effect of the heterojunctions and the SPR effect of the non-noble metal Al significantly improve the photoelectrode performance,providing a novel concept for the design of electrodes with good properties and high practicability.展开更多
Intelligent reflecting surface(IRS) is regarded as a promising technology because it can achieve higher passive beamforming gain. In particular, the IRS assisted simultaneous wireless information and power transfer(SW...Intelligent reflecting surface(IRS) is regarded as a promising technology because it can achieve higher passive beamforming gain. In particular, the IRS assisted simultaneous wireless information and power transfer(SWIPT) system can make the information decoding receivers(IDRs) have a higher signal-to-noise ratio(SNR), and the energy harvesting receivers(EHRs) have the guarantee of minimum harvested energy threshold. Motivated by the above,in this paper, we use the power splitting(PS) at the user and introduce artificial noise(AN) into the access point(AP), so that the user in system can harvest energy and decode information simultaneously,further improve the security of user. We jointly optimize the beamforming matrix at AP, the reflection phase shift at IRS and the PS ratio, in order to maximize the user’s achievable secrecy rate, subject to the user’s minimum harvested energy threshold and AP’s transmission power. Due to the introduction of PS ratio, the coupling between variables is increased,and the complexity of the problem is significantly increased. Furthermore, the problem is non-convex, so we propose an efficient algorithm based on Taylor Formula, semi-definite relaxation(SDR) and alternating optimization(AO) to get the solution. Numerical results show that the proposed IRS-SWIPT system with PS and AN achieves significant performance improvement compared with other benchmark scheme.展开更多
Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) a...Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) and Zn-air batteries. Herein, a trifunctional electrocatalyst of urchin-like Al,P-codoped Co3O4 microspheres supported on Ni foam(denoted as AP-CONPs/NF) was fabricated via a hydrothermal process and subsequent low-temperature annealing and phosphorization, exhibiting enhanced OER, HER and ORR activities compared with single-doped and undoped samples. Their surface self-organized microstructure and excellent "superaerophobic" feature make a high bubble repellency, which boost diffusion of reactants and electrolyte-electrode intimate contact. The codoping of Al and P elements into Co3O4 betters right the balance among surface chemical state, the increased oxygen vacancies and the promoted charge transfer. Encouraged by these synergistic advantages, the AP-CONPs/NF was further employed as excellent bifunctional electrodes for the OWS(low cell voltage of 1.57 V at 10 mA cm-2) and as air cathode for rechargeable Zn-air batteries(high power density of 89.1 mW cm-2), which demonstrates a great feasibility for practical applications.展开更多
Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fund...Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.展开更多
Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in...Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in achieving efficient water splitting.The identification of authentic active origin under the service conditions can prompt a more reasonable design of catalysts together with well-confined micro-/nano-structures to boost the efficiency of water splitting.Herein,Fe,Co,and Ni ternary transition metal dichalcogenide(FCND)nanorod arrays on Ni foam are purposely designed as an active and stable low-cost OER pre-catalyst for the electrolysis of water in alkaline media.The optimized FCND catalyst demonstrated a lower overpotential than the binary and unary counterparts,and a 27-fold rise in kinetic current density at the overpotential of 300 m V compared to the nickel dichalcogenide counterpart.Raman spectra and other structural characterizations at different potentials reveal that the in-situ surface self-reconstruction from FCND to ternary transition metal oxyhydroxides(FCNOH)on catalyst surfaces initiated at about 1.5 V,which is identified as the origin of OER activity.The surface selfreconstruction towards FCNOH also enables excellent stability,without fading upon the test for 50 h.展开更多
Oxygen evolution reaction(OER)is a bottleneck half-reaction in many important energy conversion processes(e.g.,water splitting),and one of the key issues lies to develop high-efficiency,cost-effective OER electrocatal...Oxygen evolution reaction(OER)is a bottleneck half-reaction in many important energy conversion processes(e.g.,water splitting),and one of the key issues lies to develop high-efficiency,cost-effective OER electrocatalysts.Rather than those popular extrinsic modulations of any catalysts with gradually degraded performance,we aim at the utilization of the intermediates offered from the undergoing OER as long-standing electrocatalysts.Herein,by inverted design,we extracted the bimetallic borides(FeCoB_(2))-derived intermediates metal borates in the OER,unlocking their potential as a selffunctionalized highly active catalytic phase in-situ formed on the metal boride surface for continuing OER operation.Mechanistically,the surface metal atoms are oxidized to oxyhydroxides,and the surface metalloids(B)are further transformed to the corresponding oxoanions to form metal borates.Such OER self-produced electrocatalyst exhibits a small overpotential of 295 mV at 10 mA/cm2 and its high catalytic activity lasts even after 200 h.Compared with FeCoB_(2),the catalytic activity of this electrochemically activated FeCoB_(2) is~7 times higher.The in-situ formed metal borate is dominatingly responsible for the obtained high catalytic activity.Such unique OER-produced self-functionalization surfaces of metal borates afford to greatly reduce the energy barrier of the continuing OER,thereby accelerating the reaction process.展开更多
Taking into account the quantum size effect and the spin dependence of the electronic band structure,and including the spin dependence of the scattering from bulk impurities and two different sets of surface roughness...Taking into account the quantum size effect and the spin dependence of the electronic band structure,and including the spin dependence of the scattering from bulk impurities and two different sets of surface roughness,wepresent a theory on the electronic transport in magnetic film,in which the average autocorrelation function (ACF) forsurface roughness is described by a Gaussion model.Our result shows that the conductivity is a sensitive function ofsurface roughness and exchange energy.It is also found that in the thin film limit and in the lower-order approximationof the surface scattering,the total conductivity is given by a sum of conductivities of all the subbands and the two spinchannels,for each subband and each spin channel the scattering rates due to the impurities and two surfaces are additive.展开更多
文摘We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.
基金supported by the National Natural Science Foundation of China(52174071,U1903216,52004052)the National Key R&D Program of China(2022YFC2903903).
文摘In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.
基金supported by the National Natural Science Foundation of China(12205300 and 12135012)the Natural Science Foundation of Anhui Province(2208085QA28 and 2208085J01)。
文摘Simultaneously realizing improved activity and stability of acidic oxygen evolution reaction(OER) electrocatalysts is highly promising for developing cost-effective sustainable energy in the splitting of water technique.Herein,we report iridium nanocrystals embedded into 3D conductive clothes(Ir-NCT/CC) as a low iridium electrocatalyst realizing ultrahigh acidic OER activity and robust stability.The well-designed Ir-NCT/CC requires a low overpotential of 202 mV to reach the current density of 10 mA cm^(-2)with a high mass activity of 1754 A g^(-1).Importantly,in acidic overall water splitting,Ir-NCT/CC merely delivers a cell voltage of 1.469 V at a typical current density of 10 mA cm^(-2)and also maintains robust durability under continuous operation.We identify that a low working voltage drives the formation of a highly stable amorphous IrOxactive phase over the surface of Ir nanocrystals(surface heterojunction IrOx/Ir-NCT) during operating conditions,which contributes to an effective and durable OER process.
基金supported by the Inner Mongolia R&D Program Plan(2021ZD0042,2021EEDSCXSFQZD006)the National Natural Science Foundation of China(21902123)the Natural Science Basic Research Program of Shaanxi(2023-JC-ZD-22)。
文摘Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.
基金supported by the National Natural Science Foundation of China(21872104,21501131,21978216 and 22272082)the Natural Science Foundation of Tianjin for Distinguished Young Scholar(20JCJQJC00150)the Analytical&Testing Center of Tiangong University for PL work。
文摘Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.
基金supported by the Basic Research&Development Program (2020R1F1A105408412)the C1 Gas Refinery Program(2015M3D3A1A0106489931) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT,Republic of Korea。
文摘Monoclinic BiVO_(4) is a widely researched semiconductor in solar water splitting owing to its suitable characteristics. However, BiVO_(4) faces limitations, such as the inefficient separation and transportation of photogenerated charges in the bulk and poor catalytic water oxidation reactions at the surface that affect the water-splitting efficiency. In this work, the Cs intercalation strategy at the surface of BiVO_(4) is proposed for the enhanced water splitting to H_(2) and O_(2) productions via the effective separation and transportation photogenerated charges and improved surface catalytic water oxidation reactions. The Cs ions are found to intercalate at the surface of BiVO_(4) and regulate the oxygen vacancies to provide active O_(2) production sites and stability. The surface intercalation of Cs boosts the photocurrent to 1.89 mA cm^(-2)at 1.23 V vs.reference hydrogen electrode(RHE). A stoichiometric evolution of H_(2) and O_(2) is recorded with a faradaic efficiency of 92%. The open-circuit voltage measurements confirmed the increase in the carrier lifetime with the work function tuning upon Cs intercalation. The proposed Cs intercalation strategy suggests an effective route to suppress the charge recombination with an increase in carrier lifetime and charge separation in BiVO_(4) for the enhanced PEC application.
基金Project supported by the Program of One Hundred Talented People of the Chinese Academy of SciencesNational Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.
基金Project supported the National Key Basic Research and Development Program of China (Grant Nos.2012CB921304 and 2013CB632805)the National Natural Science Foundation of China (Grant Nos.60990313,61306120,and 6106003)the Foundation of Fuzhou University (Grant No.022498)
文摘The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-106A1)。
文摘The performance of symbiotic radio(SR)networks can be improved by equipping secondary transmitters(STs)with intelligent reflecting surfaces(IRSs).Since the IRS power consumption is a non-negligible issue for STs,we consider an IRS assisted SR system where the IRS operates under power splitting(PS)mode.We aim at minimizing the IRS power consumption for the ST under the quality of service constraints for both primary and secondary transmissions by optimizing the transmit beamforming,the reflect beamforming and the PS factor.The optimization problem is non-convex.To tackle it,an algorithm is proposed by employing the block coordinate descent,semidefinite relaxation and alternating direction method of multipliers techniques.Simulation results demonstrate the efficiency and effectiveness of the proposed algorithm.
基金support of this research by the National Natural Science Foundation of China(Nos.U20A20250 and 22179034)the Natural Science Foundation of Heilongjiang Province(No.ZD2023B002).
文摘Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catalysts present effective alternatives due to the diverse valence states,adjustable electronic structures,and plentiful components.In this review,the catalytic mechanisms of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)for electrocatalytic water splitting are described.Then,the synthesis strategies of various cobalt-based catalysts are systematically summarized,followed by the relationships between the structure and performance clarified.Subsequently,the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed.Furthermore,the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations.Finally,we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.
基金Hundred Talent Program of Chinese Academy of Sciences under Grant No. 0300YQ000101. Partly supported by the National Natural Sci
文摘Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.
基金supported by the Natural Science Foundation of Shandong Province(ZR2019PB013)the Natural Science Foundation of Tianjin(19JCZDJC37700)the National Natural Science Foundation of China(21421001 and 21875118)。
文摘To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.
文摘Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode is manufactured by depositing plasmonic nanoparticles of the non-noble metal Al on the surface of a TiO2/Cu2O core/shell heterojunction for the first time.The Al nanoparticles,which exhibit a surface plasmon resonance(SPR)effect and are substantially less expensive than noble metals such as Au and Ag,generate hot electron-hole pairs and amplify the electromagnetic field at the interface under illumination.The as-prepared TiO2/Cu2O/Al/Al2O3 photoelectrodes have an extended absorption range and enhanced carrier separation and transfer.Their photocurrent density of 4.52 mA·cm^-2 at 1.23 V vs.RHE represents an 1.84-fold improvement over that of TiO2/Cu2O.Specifically,the ultrathin Al2O3 passivation layer spontaneously generated on the surface of Al in air could act as a protective layer to significantly increase its stability.In this work,the synergistic effect of the heterojunctions and the SPR effect of the non-noble metal Al significantly improve the photoelectrode performance,providing a novel concept for the design of electrodes with good properties and high practicability.
基金supported by the National Natural Science Foundation of China (No. 61971190)the Fundamental Research Funds for the Central Universities (No. 2019 MS089)+1 种基金the Hebei Province Natural Science Foundation (No. F2016502062)the Beijing Natural Science Foundation (No. 4164101)。
文摘Intelligent reflecting surface(IRS) is regarded as a promising technology because it can achieve higher passive beamforming gain. In particular, the IRS assisted simultaneous wireless information and power transfer(SWIPT) system can make the information decoding receivers(IDRs) have a higher signal-to-noise ratio(SNR), and the energy harvesting receivers(EHRs) have the guarantee of minimum harvested energy threshold. Motivated by the above,in this paper, we use the power splitting(PS) at the user and introduce artificial noise(AN) into the access point(AP), so that the user in system can harvest energy and decode information simultaneously,further improve the security of user. We jointly optimize the beamforming matrix at AP, the reflection phase shift at IRS and the PS ratio, in order to maximize the user’s achievable secrecy rate, subject to the user’s minimum harvested energy threshold and AP’s transmission power. Due to the introduction of PS ratio, the coupling between variables is increased,and the complexity of the problem is significantly increased. Furthermore, the problem is non-convex, so we propose an efficient algorithm based on Taylor Formula, semi-definite relaxation(SDR) and alternating optimization(AO) to get the solution. Numerical results show that the proposed IRS-SWIPT system with PS and AN achieves significant performance improvement compared with other benchmark scheme.
基金the National Natural Science Foundation of China(21421001,21573115,21875118)the Natural Science Foundation of Tianjin(17JCYBJC17100,19JCZDJC37700)。
文摘Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) and Zn-air batteries. Herein, a trifunctional electrocatalyst of urchin-like Al,P-codoped Co3O4 microspheres supported on Ni foam(denoted as AP-CONPs/NF) was fabricated via a hydrothermal process and subsequent low-temperature annealing and phosphorization, exhibiting enhanced OER, HER and ORR activities compared with single-doped and undoped samples. Their surface self-organized microstructure and excellent "superaerophobic" feature make a high bubble repellency, which boost diffusion of reactants and electrolyte-electrode intimate contact. The codoping of Al and P elements into Co3O4 betters right the balance among surface chemical state, the increased oxygen vacancies and the promoted charge transfer. Encouraged by these synergistic advantages, the AP-CONPs/NF was further employed as excellent bifunctional electrodes for the OWS(low cell voltage of 1.57 V at 10 mA cm-2) and as air cathode for rechargeable Zn-air batteries(high power density of 89.1 mW cm-2), which demonstrates a great feasibility for practical applications.
基金the National Key Research and Development Program of China (Grant No. 2017YFA0205700)National Basic Research Program of China (Grant No. 2015CB932403, 2017YFA0206000)+3 种基金National Natural Science Foundation of China (Grant Nos. 11674012, 61521004, 21790364, 61422501, and 11374023)Beijing Natural Science Foundation (Z180011, and L140007)Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 201420)National Program for Support of Top-notch Young Professionals (Grant No. W02070003).
文摘Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.
基金the financial support from the National Natural Science Foundation of China(21673171)the kind support for the academic research by the Ministry of Education Singapore(Tier 1,R284-000-193-114)for research conducted in the National University of Singapore.Q.C.thanks support from the China Scholarship Council(CSC)。
文摘Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in achieving efficient water splitting.The identification of authentic active origin under the service conditions can prompt a more reasonable design of catalysts together with well-confined micro-/nano-structures to boost the efficiency of water splitting.Herein,Fe,Co,and Ni ternary transition metal dichalcogenide(FCND)nanorod arrays on Ni foam are purposely designed as an active and stable low-cost OER pre-catalyst for the electrolysis of water in alkaline media.The optimized FCND catalyst demonstrated a lower overpotential than the binary and unary counterparts,and a 27-fold rise in kinetic current density at the overpotential of 300 m V compared to the nickel dichalcogenide counterpart.Raman spectra and other structural characterizations at different potentials reveal that the in-situ surface self-reconstruction from FCND to ternary transition metal oxyhydroxides(FCNOH)on catalyst surfaces initiated at about 1.5 V,which is identified as the origin of OER activity.The surface selfreconstruction towards FCNOH also enables excellent stability,without fading upon the test for 50 h.
基金Financially supported by the National Natural Science Foundation of China(51872115,52101256,51932003)China Postdoctoral Science Foundation Project(2020M680043)+1 种基金Science and Technology Research Project of the Department of Education of Jilin Province(JJKH20211083KJ)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province(20200801001GH)。
文摘Oxygen evolution reaction(OER)is a bottleneck half-reaction in many important energy conversion processes(e.g.,water splitting),and one of the key issues lies to develop high-efficiency,cost-effective OER electrocatalysts.Rather than those popular extrinsic modulations of any catalysts with gradually degraded performance,we aim at the utilization of the intermediates offered from the undergoing OER as long-standing electrocatalysts.Herein,by inverted design,we extracted the bimetallic borides(FeCoB_(2))-derived intermediates metal borates in the OER,unlocking their potential as a selffunctionalized highly active catalytic phase in-situ formed on the metal boride surface for continuing OER operation.Mechanistically,the surface metal atoms are oxidized to oxyhydroxides,and the surface metalloids(B)are further transformed to the corresponding oxoanions to form metal borates.Such OER self-produced electrocatalyst exhibits a small overpotential of 295 mV at 10 mA/cm2 and its high catalytic activity lasts even after 200 h.Compared with FeCoB_(2),the catalytic activity of this electrochemically activated FeCoB_(2) is~7 times higher.The in-situ formed metal borate is dominatingly responsible for the obtained high catalytic activity.Such unique OER-produced self-functionalization surfaces of metal borates afford to greatly reduce the energy barrier of the continuing OER,thereby accelerating the reaction process.
基金the Natural Science Foundation of Education Bureau of Jiangsu Province of China under Grant No.05KJB140008the"333"Project Funds of Jiangsu Province of China
文摘Taking into account the quantum size effect and the spin dependence of the electronic band structure,and including the spin dependence of the scattering from bulk impurities and two different sets of surface roughness,wepresent a theory on the electronic transport in magnetic film,in which the average autocorrelation function (ACF) forsurface roughness is described by a Gaussion model.Our result shows that the conductivity is a sensitive function ofsurface roughness and exchange energy.It is also found that in the thin film limit and in the lower-order approximationof the surface scattering,the total conductivity is given by a sum of conductivities of all the subbands and the two spinchannels,for each subband and each spin channel the scattering rates due to the impurities and two surfaces are additive.