期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Earth's deformation due to the dynamical perturbations of the fluid outer core 被引量:2
1
作者 XU Jian-qiao +3 位作者 (徐建桥) SUN He-ping (孙和平) 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第4期414-424,共11页
The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical ... The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core. 展开更多
关键词 dynamical effect of the fluid outer core boundaries of the fluid outer core internal load Love
下载PDF
Protective effects of the cochlear efferent system on the outer hair cells against intense sound:evidences from DPOAEs
2
作者 ZHENG Jiefu JIANG Sichang +2 位作者 GU Rui YANG Weiyan LI Xingqi(Dept. of Otolaryngology, Chinese PLA Generol Hospital Beijing 100853) 《Chinese Journal of Acoustics》 1998年第3期221-226,共6页
It has been revealed in recent years that contralateral acoustic stimulation can affect cochlear active mechanisms through activating medial olivocochlear system (MOC) of the cochlear efferent nerve fibers. The MOC is... It has been revealed in recent years that contralateral acoustic stimulation can affect cochlear active mechanisms through activating medial olivocochlear system (MOC) of the cochlear efferent nerve fibers. The MOC is therefore postulated to exert protective effects on outer hair cells (OHCs) under intense sound condition. In this study the effects of 4 kHz intense tone exposure on distortion product otoacoustic emissions (DPOAEs) in guinea pigs with and without contralateral white noise stimulation were observed so that to investigate the protective effects of MOC on OHCs. The results showed that DPOAEs obviously deceased after the intense tone exposure in all animals, while both the amplitude reduction and the affected frequency range of DPOAEs were smaller in animals with simultaneously delivered contralateral white noise during the tone exposure than that in animals without colltralateral acoustic stimulation. The above results may suggest some protective nature of the contralateral sound stimulating effects which might be mediated through the activity of MOC. These perhaps can serve as the evidence that the protective mechanism against intense sound operates in the outer hair cells which are strongly innervated by MOC 展开更多
关键词 Protective effects of the cochlear efferent system on the outer hair cells against intense sound
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部