Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
This article proposes use of extruded compound materials with optimized resistant cross-sections as an alternative, in this case, seeking the maximum energy density as a design criterion. The advantage of this proposa...This article proposes use of extruded compound materials with optimized resistant cross-sections as an alternative, in this case, seeking the maximum energy density as a design criterion. The advantage of this proposal is that it extends the life cycle and decreases fatigue issues.展开更多
Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow dr...Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.展开更多
In industrial plants, ships, and buildings, a large amount of gas and air ducts are applied for equipment connection, HVAC, medium transport, and exhaust, etc. These ducts can be designed in varied cross-sectional sha...In industrial plants, ships, and buildings, a large amount of gas and air ducts are applied for equipment connection, HVAC, medium transport, and exhaust, etc. These ducts can be designed in varied cross-sectional shapes, such as round or rectangle. The author reveals through geometric calculation of the duct cross-sectional shapes and engineering experiences that the round cross-section is an optimal shape in the duct system. The round duct has the shorter perimeter than the other cross-sectional shape ducts and the stronger structure in the same working condition. The material saving of the round duct due to the shorter perimeter is quantitatively determined. In the pater, it is shown that the round duct is economically attractive. The economic analysis for the material cost saving is illustrated by an example. For a long duct system, the material and material cost savings are significant. It is suggested that the round duct in the gas and air duct system should have priority as long as the field conditions are allowed. In the paper, the material cost saving is also converted to PW, AW, and FW used for LCC economic analysis.展开更多
Stiffened plates or shells are widely used in engineering structures as primary or secondary load-bearing components.How to design the layout and sizes of the stiffeners is of great significance for structural lightwe...Stiffened plates or shells are widely used in engineering structures as primary or secondary load-bearing components.How to design the layout and sizes of the stiffeners is of great significance for structural lightweight.In this work,a new topology optimization method for simultaneously optimizing the layout and cross-section topology of the stiffeners is developed to solve this issue.The stilfeners and base plates are modeled by the beam and shell elements,respectively,significantly reducing the computational cost.The Giavotto beam theory,instead of the widely employed Euler or Timoshenko beam theory,is applied to model the stiffeners for considering the warping deformation in evaluating the section stiffness of the beam.A multi-scale topology optimization model is established by simultaneously optimizing the layout of the beam and the topology of the cross-section.The design space is significantly expanded by optimizing these two types of design variables.Several numerical examples are applied to illustrate the validity and effectiveness of the proposed method.The results show that the proposed two-scale optimization approach can generate better designs than the single-scale method.展开更多
Concept design is vital important in development of auto-body and it has great effects on later design work.In this paper,a twolevel cross-sectional optimization approach is presented to shorten concept design cycles...Concept design is vital important in development of auto-body and it has great effects on later design work.In this paper,a twolevel cross-sectional optimization approach is presented to shorten concept design cycles.First,an exact structural analysis approach for spatial semi-rigid framed structures,i.e.,the transfer stiffness matrix method proposed in our previous study,is adopted for both static and dynamic analyses of body-in-white(BIW)structure.A two-level cross-sectional optimization approach is then proposed for an automotive BIW lightweight design,and genetic algorithm is used to solve the optimization models.Afterward,an object-oriented MATLAB toolbox,using distributed parallel computing techniques,is developed to promote the concept design of the BIW structure.Finally,relevant numerical examples demonstrate the validity and accuracy of the proposed method.展开更多
The elliptical cross-section spiral equal-channel extrusion (ECSEE) process is simulated by using Deform-3D finite element software. The ratio m of major-axis to minor-axis length for ellipse-cross-section, the tors...The elliptical cross-section spiral equal-channel extrusion (ECSEE) process is simulated by using Deform-3D finite element software. The ratio m of major-axis to minor-axis length for ellipse-cross-section, the torsion angle u, the round-ellipse cross-section transitional channel L1, the elliptical rotation cross-section transitional channel L2 and the ellipse-round cross-section transitional channel L3 are destined for the extrusion process parameters. The average effective strain eave on cross-section of blank, the deformation uniformity coefficient a and the value of maximum damage dmax are chosen to be the optimize indexes, and the virtual orthogonal experiment of L16 (45) is designed. The correlation degree of the process factors affecting eave, a and dmax is analyzed by the numerical simulation results using the weights and grey association model. The process parameters are optimized by introducing the grey situation decision theory and the ECSEE optimal combination of process parameters is obtained: u of 120 , m of 1.55, L1 of 7 mm, L2 of 10 mm, and L3 of 10 mm. Simulation and experimental results show that the material can be refined with the optimized structural parameters of die. Therefore, the optimization results are satisfactory.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
文摘This article proposes use of extruded compound materials with optimized resistant cross-sections as an alternative, in this case, seeking the maximum energy density as a design criterion. The advantage of this proposal is that it extends the life cycle and decreases fatigue issues.
基金supported by the National Science and Technology Supporting Plan (Grant No. 2009BAK56B05)Key Project of Chinese National Programs for Fundamental Research and Development (973 Program) (Grant No. 2008CB425803)
文摘Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.
文摘In industrial plants, ships, and buildings, a large amount of gas and air ducts are applied for equipment connection, HVAC, medium transport, and exhaust, etc. These ducts can be designed in varied cross-sectional shapes, such as round or rectangle. The author reveals through geometric calculation of the duct cross-sectional shapes and engineering experiences that the round cross-section is an optimal shape in the duct system. The round duct has the shorter perimeter than the other cross-sectional shape ducts and the stronger structure in the same working condition. The material saving of the round duct due to the shorter perimeter is quantitatively determined. In the pater, it is shown that the round duct is economically attractive. The economic analysis for the material cost saving is illustrated by an example. For a long duct system, the material and material cost savings are significant. It is suggested that the round duct in the gas and air duct system should have priority as long as the field conditions are allowed. In the paper, the material cost saving is also converted to PW, AW, and FW used for LCC economic analysis.
基金The authors gratefully acknowledge the financial support to this work from the National Natural Science Foundation of China(Grants 11802164 and U1808215)Shandong Provincial Natural Science Foundation(Grant ZR2019BEE005)the project funded by China Postdoctoral Science Foundation.
文摘Stiffened plates or shells are widely used in engineering structures as primary or secondary load-bearing components.How to design the layout and sizes of the stiffeners is of great significance for structural lightweight.In this work,a new topology optimization method for simultaneously optimizing the layout and cross-section topology of the stiffeners is developed to solve this issue.The stilfeners and base plates are modeled by the beam and shell elements,respectively,significantly reducing the computational cost.The Giavotto beam theory,instead of the widely employed Euler or Timoshenko beam theory,is applied to model the stiffeners for considering the warping deformation in evaluating the section stiffness of the beam.A multi-scale topology optimization model is established by simultaneously optimizing the layout of the beam and the topology of the cross-section.The design space is significantly expanded by optimizing these two types of design variables.Several numerical examples are applied to illustrate the validity and effectiveness of the proposed method.The results show that the proposed two-scale optimization approach can generate better designs than the single-scale method.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(No.51475152).
文摘Concept design is vital important in development of auto-body and it has great effects on later design work.In this paper,a twolevel cross-sectional optimization approach is presented to shorten concept design cycles.First,an exact structural analysis approach for spatial semi-rigid framed structures,i.e.,the transfer stiffness matrix method proposed in our previous study,is adopted for both static and dynamic analyses of body-in-white(BIW)structure.A two-level cross-sectional optimization approach is then proposed for an automotive BIW lightweight design,and genetic algorithm is used to solve the optimization models.Afterward,an object-oriented MATLAB toolbox,using distributed parallel computing techniques,is developed to promote the concept design of the BIW structure.Finally,relevant numerical examples demonstrate the validity and accuracy of the proposed method.
基金co-supported by National Natural Science Foundation of China (No. 51275414)Aeronautical Science Foundation of China (No. 2011ZE53059)+1 种基金National Defense Basic Research Program (No. 51318040105)Graduate Starting Seed Fund of Northwestern Polytechnical University(No. Z2011006)
文摘The elliptical cross-section spiral equal-channel extrusion (ECSEE) process is simulated by using Deform-3D finite element software. The ratio m of major-axis to minor-axis length for ellipse-cross-section, the torsion angle u, the round-ellipse cross-section transitional channel L1, the elliptical rotation cross-section transitional channel L2 and the ellipse-round cross-section transitional channel L3 are destined for the extrusion process parameters. The average effective strain eave on cross-section of blank, the deformation uniformity coefficient a and the value of maximum damage dmax are chosen to be the optimize indexes, and the virtual orthogonal experiment of L16 (45) is designed. The correlation degree of the process factors affecting eave, a and dmax is analyzed by the numerical simulation results using the weights and grey association model. The process parameters are optimized by introducing the grey situation decision theory and the ECSEE optimal combination of process parameters is obtained: u of 120 , m of 1.55, L1 of 7 mm, L2 of 10 mm, and L3 of 10 mm. Simulation and experimental results show that the material can be refined with the optimized structural parameters of die. Therefore, the optimization results are satisfactory.