期刊文献+
共找到901篇文章
< 1 2 46 >
每页显示 20 50 100
Finite Element Analysis for the Structure Optimization Design of the CPUE Load-Bearing Wheel of Tracked Vehicle
1
作者 于立彪 郑慕侨 张英 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期162-165,共4页
A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operatin... A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle. 展开更多
关键词 zero order finite element analysis structure optimization cast polyurethane elastomers(CPUE) load bearing wheel durability
下载PDF
Finite Element Analysis on the Pre-load Structures of the Central Solenoid for the HT-7U Device
2
作者 曹云露 吴维越 +1 位作者 翁佩德 武松涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第3期813-820,共8页
The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the fin... The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria. 展开更多
关键词 finite element Analysis on the Pre-load structures of the Central Solenoid for the HT-7U Device HT load
下载PDF
Combined load bearing capacity of rigid piles embedded in a crossanisotropic clay deposit using 3D finite element lower bound 被引量:1
3
作者 Ardavan Izadi Reza Jamshidi Chenari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期717-737,共21页
In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-aniso... In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-anisotropic soils under general loading condition.The lower bound solutions of the pile embedded in an anisotropic soil deposit can be found by formulating the element equilibrium,equilibrium of shear and normal stresses along discontinuities,boundary conditions,yield function,and optimizing the objective function through the second-order cone programming method in conjunction with an iterative-based update procedure.A general loading condition is considered to profile the expansion of the safe load in the vertical-horizontal-moment(V-H-M)space.The results of this study are compared and validated against three different cases including an isotropic lateral loading,anisotropic end bearing capacity,and a pile embedded in an isotropic soil deposit under general loading condition.A parametric study is conducted to evaluate the impact of different influencing factors.It was found that the effect of anisotropy on the variation of lateral limit load of a single pile is more pronounced than the corresponding vertical and bending moment limit loads,whereas the interface properties have more significant effects on the vertical and bending moment limit loads in comparison to the lateral limit load. 展开更多
关键词 Rigid pile Cross-anisotropy CLAY combined loading Three-dimensional finite element lower BOUND
下载PDF
Deformation coordination analysis of CC-RCC combined dam structures under dynamic loads 被引量:1
4
作者 Bo-wen Shi Ming-chao Li +2 位作者 Ling-guang Song Meng-xi Zhang Yang Shen 《Water Science and Engineering》 EI CAS CSCD 2020年第2期162-170,共9页
A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the enginee... A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the engineering design standpoint,it is crucial to understand the deformation coordination characteristics and mechanical properties of large-volume heterogeneous concrete,which affect dam safety and stability.In this study,a large dam facility was selected for a case study,and various design schemes of the combined dam structure were developed by changing the configurations of material zoning and material types for a given dam shape.Elastoplastic analysis of the damfoundation-reservoir system for six schemes was carried out under dynamic conditions,in which the concrete damaged plasticity(CDP)model,the Lagrangian finite element formulation,and a surface-to-surface contact model were utilized.To evaluate the mechanical properties of zoning interfaces and coordination characteristics,the vertical distribution of the first principal stress at the longitudinal joint was used as the critical index of deformation coordination control,and the overall deformation and damage characteristics of the dam were also investigated.Through a comparative study of the design schemes,an optimal scheme of the combined dam structure was identified:large-volume roller-compacted concrete(RCC)is recommended for the dam body upstream of the longitudinal joint,and high-volume fly ash conventional concrete(CC)for the dam body downstream of the longitudinal joint.This study provides engineers with a reference basis for combined dam structure design. 展开更多
关键词 combined dam structure Deformation coordination CC-RCC Dynamic response finite element simulation Concrete damaged plasticity(CDP)model
下载PDF
Nonlinear Finite Element Analysis of the Structure of Door Seals
5
作者 赵建才 朱训生 周持兴 《Journal of Donghua University(English Edition)》 EI CAS 2005年第2期62-65,共4页
In order to evaluate the influence of the seal structure on door dosing force, nonlinear finite dement methed is introduced to analyze compression deformation of a door seal for SANTANA (name of the car made by Shang... In order to evaluate the influence of the seal structure on door dosing force, nonlinear finite dement methed is introduced to analyze compression deformation of a door seal for SANTANA (name of the car made by Shanghai Volkswagen Co. Ltd). MSC. Marc software is used to analyze the large deformation of the seal and the compression test is done to prove the computational results. The results show that the compression loads of the door seal are larger than the standard value of Shanghai Volkswagen Co. Ltd and the seal structure needs to be optimized. There are consistent relationships between calculating results and experimental results and the simulation method is effective. 展开更多
关键词 Nonlinear finite element structure Door seal Compression load
下载PDF
Analysis and Research of Ice Loads Acting on Offshore Structures 被引量:1
6
作者 Ji, Chunqun 《China Ocean Engineering》 SCIE EI 1993年第2期167-176,共10页
Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mecha... Usually, the action of sea ice on offshore engineering structures is one of the controlling loads in cold waters engineering structure design. The reasonable selection of environmental condition and the physical mechanical properties of ice in the region are directly related to the structure design, operation and safety. In this paper, the sea ice force acting on the structure, the physical mechanical properties of ice and the selection of parameters in calculation are discussed. Some suggestions are proposed as to the calculation of various kinds of ice loads acting on the structure. 展开更多
关键词 Accident prevention Arctic engineering CALCULATIONS Dynamic loads finite element method Ice control Mechanical properties Offshore structures Physical properties structural design
下载PDF
Finite element failure analysis of continuous prestressed concrete box girders 被引量:4
7
作者 张峰 李术才 +2 位作者 李树忱 叶见曙 雷笑 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期236-240,共5页
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a... In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity. 展开更多
关键词 full-scale failure test prestressed concrete box girder finite element analysis combined element prestressed tendon load carrying capacity
下载PDF
Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load 被引量:4
8
作者 张秀华 段忠东 张春巍 《Transactions of Tianjin University》 EI CAS 2008年第B10期523-529,共7页
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele... The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load. 展开更多
关键词 blast load progressive collapse steel frame structures numerical simulation finite element
下载PDF
Analysis of static structural mechanics of vertical axis wind turbine with lift-drag combined starting structures
9
作者 QU Chunming FENG Fang +2 位作者 LI Yan BAI Yuedi ZHAO Bin 《排灌机械工程学报》 CSCD 北大核心 2021年第9期923-928,共6页
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo... The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs. 展开更多
关键词 vertical axis wind turbine finite element analysis static structural mechanics lift-drag combined starting structure model analysis
下载PDF
THEORY OF PERTURBATION FINITE ELEMENT ANALYSIS FOR SOLUTION OF NONLINEAR BUCKLING CRITICAL LOADS OF STRUCTURES
10
作者 李龙元 《Science China Mathematics》 SCIE 1989年第5期564-569,共6页
The author presents a theory, including the complete analysis and incomplete analysis,of perturbational finite element analysis for the solution of nonlinear buckling critical loadsof structures.
关键词 nonlinear BUCKLING THEORY of perturbational finite element analysis CRITICAL loads of structures.
原文传递
Failure Loci of Suction Caisson Foundations Under CombinedLoading Conditions 被引量:2
11
作者 王栋 金霞 《China Ocean Engineering》 SCIE EI 2008年第3期455-464,共10页
Suction caissons are widely used to support offshore fixed platforms in coastal areas. The loadings transferred to suction caissons include the eccentric lateral force induced by waves and self weight of the platform ... Suction caissons are widely used to support offshore fixed platforms in coastal areas. The loadings transferred to suction caissons include the eccentric lateral force induced by waves and self weight of the platform structure. However, under this kind of combined loading conditions, the failure mechanism of caissons with shallow embedment depths is quite different from conventional deep foundations or onshore shallow footings. The behaviour of caissons subjected to combined loadings may be described with the "failure locus" in force resultant spaces. Here the failure loci of smooth caissons are studied by use of finite dement approach, with the embedment ratio of caissons varying in the range of 0.25 - 1.0 and eccentricity ratio of horizontal loadiugs in 0 - 10. The platform settlement and tilt limits are involved into determination of failure loci, thus the platforms can avoid significant displacements for the combined loadings located inside the failure locus. Three families of loading paths are used to map out the locus. It is found that the shape of failure loci depends on 3 non-dimensional parameters, and the failure locus of a given caisson changes gradually from the elliptical curve to hooked curve with increasing shear strength of soil. The lateral capacity of short caissons may be enhanced by vertical forces, compared with the maximum lateral capacity of long caissons occurring at the vertical force being zero. The critical embedment ratios partitioning elliptical and hooked loci are proposed. 展开更多
关键词 suction caissons finite elements clays bearing capacity combined loading
下载PDF
Undrained Bearing Capacity of Spudcan Under Combined Loading 被引量:2
12
作者 王立忠 舒恒 +1 位作者 李玲玲 国振 《China Ocean Engineering》 SCIE EI 2011年第1期15-30,共16页
The bearing capacities of spudcan foundation under pure vertical (/1), horizontal (H), moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis. The ... The bearing capacities of spudcan foundation under pure vertical (/1), horizontal (H), moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis. The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail. The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors, which are compared with published results. Ultimate limit states under combined loading are presented by failure envelopes, which are expressed in terms of dimensionless and normalized form in three-dimensional load space. The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil. 展开更多
关键词 soft clay SPUDCAN bearing capacity combined loading finite element
下载PDF
Dynamic response of UHMWPE plates under combined shock and fragment loading 被引量:1
13
作者 Chun-Zheng Zhao Lu-Sheng Qiang +4 位作者 Rui Zhang Qian-Cheng Zhang Jun-Yang Zhong Zhen-Yu Zhao Tian Jian Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期9-23,共15页
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject... Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading. 展开更多
关键词 UHMWPE composite Ballistic performance combined blast and fragment loading Impact test finite element simulation
下载PDF
A Non-Linear 3D FEM to Simulate Un-Bonded Steel Reinforcement Bars under Axial and Bending Loads
14
作者 Rami HAWILEH Adeeb RAHMAN Habib TABATABAI 《Engineering(科研)》 2009年第2期75-90,共16页
This paper presents development of 3D non-linear finite element model to simulate the response and predict the behavior of un-bonded mild steel bars under axial and bending loading. The models were successfully analyz... This paper presents development of 3D non-linear finite element model to simulate the response and predict the behavior of un-bonded mild steel bars under axial and bending loading. The models were successfully analyzed with the finite element software ANSYS, taking into account the nonlinear material properties of the reinforced mild steel bars. A bending strain relationship is derived based on a parametric study involving multiple nonlinear finite element models. A mild steel fracture criterion based on low-cycle fatigue models is proposed to control the total (elastic and plastic) strains in the mild steel bar below a maximum permissible limit. In addition, FE predictions of bar elongation due to strain penetration reasonably agreed with a proposed empirical equation by Raynor and Lehman. It was concluded that the equation proposed by Raynor and Lehman is considered valid for estimating the additional unbounded length and can be used in both analysis and design. 展开更多
关键词 finite element combined AXIAL and BENDING loading Steel REBAR PRECAST Hybrid Frame
下载PDF
One-piece coal mine mobile refuge chamber with safety structure and less sealing risk based on FEA
15
作者 赵焕娟 钱新明 +1 位作者 黄平 王晨 《Journal of Beijing Institute of Technology》 EI CAS 2014年第2期152-157,共6页
In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an importan... In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber. 展开更多
关键词 coal mine safety structure optimization refuge chamber shell finite element analysis(FEA) impact load
下载PDF
Stochastic Response Analysis of Piled Offshore Platforms to Earthquake Load 被引量:1
16
作者 Zhang, Lifu Luo, Chuanxin 《China Ocean Engineering》 SCIE EI 1993年第2期177-186,共10页
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st... In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis. 展开更多
关键词 Dynamic loads Dynamic response Earthquake resistance Equations of motion finite element method Fluid structure interaction Pile foundations Seismic waves Soil structure interactions Spectrum analysis Stochastic control systems Vibrations (mechanical)
下载PDF
FEA-based structural optimization design of a side cooling collimating mirror at SSRF
17
作者 Li-Min Jin Na-Xiu Wang +2 位作者 Wan-Qian Zhu Feng-Gang Bian Zhong-Min Xu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第11期198-203,共6页
Based on finite element analysis of thermal mechanical behavior, structural optimization design was proposed for a side cooling collimating mirror subjected to high heat load for a beamline at SSRF(Shanghai Synchrotro... Based on finite element analysis of thermal mechanical behavior, structural optimization design was proposed for a side cooling collimating mirror subjected to high heat load for a beamline at SSRF(Shanghai Synchrotron Radiation Facility). The temperature distribution,stress concentration effect, maximum equivalent(vonMises) stress, and slope error of the mirror were analyzed.In particular, the cooling water channels of the traditional structural design were optimized, and the modified designs were further optimized. Although the traditional structural and the improved designs could meet requirements for the temperature and thermal stress, the deformation gradients were relatively large for several structural designs, and this led to larger slope error. The further improved structural designs could be of better performance. 展开更多
关键词 finite element analysis (FEA) SYNCHROTRON radiation Heat load structural optimization
下载PDF
常泰长江大桥组合索塔锚固结构钢-混传剪构造足尺模型试验研究 被引量:3
18
作者 赵灿晖 王康康 +1 位作者 沈孔健 郑清刚 《桥梁建设》 EI CSCD 北大核心 2024年第1期31-38,共8页
常泰长江大桥索塔锚固结构采用钢箱-核芯混凝土组合结构,为研究该新型组合索塔锚固结构钢-混传剪构造的受力特性,进行钢-混传剪构造足尺模型试验研究。制作2个锚固结构足尺节段试验模型,通过压剪试验研究锚固结构的荷载~滑移曲线及应力... 常泰长江大桥索塔锚固结构采用钢箱-核芯混凝土组合结构,为研究该新型组合索塔锚固结构钢-混传剪构造的受力特性,进行钢-混传剪构造足尺模型试验研究。制作2个锚固结构足尺节段试验模型,通过压剪试验研究锚固结构的荷载~滑移曲线及应力、应变分布等受力特性,并通过有限元模型分析锚固结构的传力机理和各组件的内力分配比例,推导剪力钉剪力计算方法。结果表明:在2.14倍单索最大索力荷载作用下,锚固结构保持弹性状态,钢壁板未产生明显滑移,钢-混界面最大滑移不超过0.25 mm,该锚固结构中钢-混传剪构造至少具有2.14倍的安全系数;荷载作用下,剪力钉剪力从上至下逐渐增大,锚腹板附近底部3排剪力钉剪力较大,钢-混传剪构造至少存在剪力钉和界面摩擦力2种传剪机制,钢-混传剪构造的承载能力显著提高;钢-混传剪构造受力过程分为粘结力传力阶段和局部滑移阶段,剪力钉剪力分布不仅与沿剪切方向长度分布有关,也与荷载的大小线性相关。 展开更多
关键词 斜拉桥 组合索塔锚固结构 钢-混传剪构造 荷载~滑移曲线 足尺模型试验 有限元法
下载PDF
基于应变测试矿用汽车车架结构优化设计分析
19
作者 李伟 杨晨 《机械设计与制造》 北大核心 2024年第4期234-237,243,共5页
矿用铰接车采用液压举升机构实现货物卸载,受力情况复杂,对车架结构影响大且要求高。针对某自卸车后车架和货箱在不同运行条件下的承载特性进行分析,获取各工况的载荷情况和边界条件;根据前述分析,建立后车架和货箱的有限元分析模型,选... 矿用铰接车采用液压举升机构实现货物卸载,受力情况复杂,对车架结构影响大且要求高。针对某自卸车后车架和货箱在不同运行条件下的承载特性进行分析,获取各工况的载荷情况和边界条件;根据前述分析,建立后车架和货箱的有限元分析模型,选取多个典型工况开展分析,获取应力应变的分布情况;采用材料升级、圆角优化及焊接工艺提升等,针对应力集中和较大位置进行优化设计,降低应力值,保证安全裕度满足要求;采用直角应变测试法,针对实际自卸车车架开展应力测试,在分析的关键位置布置应变片,选取典型工况开展测试,并与仿真结果开展对比。结果可知:自卸车铰接点和液压举升缸鹅颈支撑处应力较大,并且出现了应力集中,但均在许可范围之内;采用厚度提升、直径增大及焊接工艺提升等方法,有效提升应力分布,最大值明显降低;实车测试和仿真分析,满载工况应力分布基本一致,最大值误差低于5.8%;优化后结果明显低于优化前;结果表明分析模型和优化方法的可靠性,为此类分析设计提供参考。 展开更多
关键词 铰接车 车架 满载工况 有限元模型 应变测试 结构
下载PDF
大跨铁路混凝土梁矮塔斜拉桥结构体系研究
20
作者 刘晓春 符应文 +2 位作者 李海华 谢腾飞 韦国华 《桥梁建设》 EI CSCD 北大核心 2024年第4期134-140,共7页
为研究不同结构体系对大跨铁路混凝土梁矮塔斜拉桥力学性能的影响,并寻求最优的结构体系,以崇凭铁路上金左江双线特大桥为背景,采用MIDAS Civil和ANSYS软件建立主桥有限元模型及车-轨-桥耦合动力学模型,对半飘浮体系、刚构体系、塔梁固... 为研究不同结构体系对大跨铁路混凝土梁矮塔斜拉桥力学性能的影响,并寻求最优的结构体系,以崇凭铁路上金左江双线特大桥为背景,采用MIDAS Civil和ANSYS软件建立主桥有限元模型及车-轨-桥耦合动力学模型,对半飘浮体系、刚构体系、塔梁固结体系和塔梁固结-刚构组合(高墩塔墩梁固结、矮墩纵向设置双排活动支座)体系方案进行比选,分析典型工况下主桥的静、动力特性。结果表明:在列车活载和温度作用下,采用塔梁固结-刚构组合体系的桥梁受力性能良好,采用较小的梁高即可满足桥梁结构的刚度要求;CRH2列车编组通过时不同结构体系的桥梁结构和列车编组的动力响应值均满足要求,考虑温度变形影响时不同结构体系对列车运行的安全性和舒适性的影响较小。基于力学性能计算结果,上金左江双线特大桥主桥最终采用塔梁固结-刚构组合体系。 展开更多
关键词 铁路桥 矮塔斜拉桥 结构体系 塔梁固结-刚构组合体系 静力性能 动力性能 有限元法
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部