期刊文献+
共找到36,575篇文章
< 1 2 250 >
每页显示 20 50 100
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:2
1
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment Spin state transition Orbitals hybridization Water splitting
下载PDF
Metal-organic frameworks and their composites for advanced lithium-ion batteries:Synthesis,progress and prospects
2
作者 Chengcai Liu Borong Wu +7 位作者 Tao Liu Yuanxing Zhang Jingwen Cui Lingjun Huang Guoqiang Tan Ling Zhang Yuefeng Su Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期449-470,I0011,共23页
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins... Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed. 展开更多
关键词 Metal-organic frameworks ELECTRODES Electrolytes SEPARATORS Lithium-ion batteries
下载PDF
Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks
3
作者 Yue Cao Ru Wu +2 位作者 Yan‑Yan Gao Yang Zhou Jun‑Jie Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期395-422,共28页
Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore mic... Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry. 展开更多
关键词 Covalent organic frameworks ELECTROCHEMISTRY ELECTROCHEMILUMINESCENCE SENSORS
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
4
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Photophysics of metal-organic frameworks:A brief overview
5
作者 刘晴硕 余俊宏 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期122-133,共12页
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d... Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs. 展开更多
关键词 metal-organic framework(MOF) ultrafast spectroscopy PHOTOPHYSICS carrier dynamics
下载PDF
Temperature-feedback two-photon-responsive metal-organic frameworks for efficient photothermal therapy
6
作者 Xianshun Sun Xin Lu +4 位作者 Wenyao Duan Bo Li Yupeng Tian Dandan Li Hongping Zhou 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期53-59,I0011,共8页
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi... The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT. 展开更多
关键词 metal-organic framework TWO-PHOTON temperature feedback photothermal therapy chemodynamic therapy
下载PDF
Research evolution of metal organic frameworks: A scientometric approach with human-in-the-loop
7
作者 Xintong Zhao Kyle Langlois +5 位作者 Jacob Furst Yuan An Xiaohua Hu Diego Gomez Gualdron Fernando Uribe-Romo Jane Greenberg 《Journal of Data and Information Science》 CSCD 2024年第3期44-64,共21页
Purpose:This paper reports on a scientometric analysis bolstered by human-in-the-loop,domain experts,to examine the field of metal-organic frameworks(MOFs)research.Scientometric analyses reveal the intellectual landsc... Purpose:This paper reports on a scientometric analysis bolstered by human-in-the-loop,domain experts,to examine the field of metal-organic frameworks(MOFs)research.Scientometric analyses reveal the intellectual landscape of a field.The study engaged MOF scientists in the design and review of our research workflow.MOF materials are an essential component in next-generation renewable energy storage and biomedical technologies.The research approach demonstrates how engaging experts,via human-in-the-loop processes,can help develop a comprehensive view of a field’s research trends,influential works,and specialized topics.Design/methodology/approach:Ascientometric analysis was conducted,integrating natural language processing(NLP),topic modeling,and network analysis methods.The analytical approach was enhanced through a human-in-the-loop iterative process involving MOF research scientists at selected intervals.MOF researcher feedback was incorporated into our method.The data sample included 65,209 MOF research articles.Python3 and software tool VOSviewer were used to perform the analysis.Findings:The findings demonstrate the value of including domain experts in research workflows,refinement,and interpretation of results.At each stage of the analysis,the MOF researchers contributed to interpreting the results and method refinements targeting our focus Research evolution of metal organic frameworks:A scientometric approach with human-in-the-loop on MOF research.This study identified influential works and their themes.Our findings also underscore four main MOF research directions and applications.Research limitations:This study is limited by the sample(articles identified and referenced by the Cambridge Structural Database)that informed our analysis.Practical implications:Our findings contribute to addressing the current gap in fully mapping out the comprehensive landscape of MOF research.Additionally,the results will help domain scientists target future research directions.Originality/value:To the best of our knowledge,the number of publications collected for analysis exceeds those of previous studies.This enabled us to explore a more extensive body of MOF research compared to previous studies.Another contribution of our work is the iterative engagement of domain scientists,who brought in-depth,expert interpretation to the data analysis,helping hone the study. 展开更多
关键词 Scientometric Metal-Organic frameworks(MOFs) Network analysis Topic modeling Human-in-the-loop
下载PDF
Geospatial Technology Integration in Smart City Frameworks for Achieving Climate Neutrality by 2050: A Case Study of Limassol Municipality, Cyprus
8
作者 Antonis Papantoniou Chris Danezis Diofantos Hadjimitsis 《Journal of Geographic Information System》 2024年第1期44-60,共17页
This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate ... This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change. 展开更多
关键词 Smart Cities Geospatial Technologies Smart City frameworks Geospatial Integration
下载PDF
A Tutorial on Federated Learning from Theory to Practice:Foundations,Software Frameworks,Exemplary Use Cases,and Selected Trends
9
作者 M.Victoria Luzón Nuria Rodríguez-Barroso +5 位作者 Alberto Argente-Garrido Daniel Jiménez-López Jose M.Moyano Javier Del Ser Weiping Ding Francisco Herrera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期824-850,共27页
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ... When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications. 展开更多
关键词 Data privacy distributed machine learning federated learning software frameworks
下载PDF
Expediting^(*)OH accumulation kinetics on metal-organic frameworks-derived CoOOH with CeO_(2) “accelerator” for electrocatalytic 5-hydroxymethylfurfural oxidation valorization
10
作者 Peiyun Zhou Haokun Pan +3 位作者 Guangtong Hai Xiang Liu Xiubing Huang Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期721-732,共12页
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b... In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process. 展开更多
关键词 CeO_(2) Metal-organic frameworks 5-Hydroxymethylfurfural oxidation reaction HETEROINTERFACE Reconstruction
下载PDF
Dipole polarization modulating of vinylene-linked covalent organic frameworks for efficient photocatalytic hydrogen evolution
11
作者 Ming Wang Yaling Li +6 位作者 Dengxin Yan Hui Hu a Yujie Song Xiaofang Su Jiamin Sun Songtao Xiao Yanan Gao 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期103-112,共10页
Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,w... Photocatalytic hydrogen(H_(2))evolution using covalent organic frameworks(COFs)is an attractive and promising avenue for exploration,but one of its big challenges is low photo-induced charge separation.In this study,we present a straightforward and facile dipole polarization engineering strategy to enhance charge separation efficiency,achieved through atomic modulation(O,S,and Se)of the COF monomer.Our findings demonstrate that incorporating atoms with varying electronegativities into the COF matrix significantly influences the local dipole moment,thereby affecting charge separation efficiency and photostability,which in turn affects the rates of photocatalytic H_(2) evolution.As a result,the newly developed TMT-BO-COF,which contains highly electronegative O atoms,exhibits the lowest exciton binding energy,the highest efficiency in charge separation and transportation,and the longest lifetime of the active charges.This leads to an impressive average H_(2) production rate of 23.7 mmol g^(−1) h^(−1),which is 2.5 and 24.5 times higher than that of TMT-BS-COF(containing S atoms)and TMT-BSe-COF(containing Se atoms),respectively.A novel photocatalytic hydrogen evolution mechanism based on proton-coupled electron transfer on N in the structure of triazine rings in vinylene-linked COFs is proposed by theoretical calculations.Our findings provide new insights into the design of highly photoactive organic framework materials for H_(2) evolution and beyond. 展开更多
关键词 Covalent organic framework Vinylene linkage ELECTRONEGATIVITY Dipole polarization Photocatalytic hydrogen evolution
下载PDF
Boosting photocatalytic hydrogen evolution enabled by SiO_(2)-supporting chiral covalent organic frameworks with parallel stacking sequence
12
作者 Zheng Lin Wanting Xie +2 位作者 Mengjing Zhu Changchun Wang Jia Guo 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期87-97,共11页
Two-dimensional covalent organic frameworks(2D COFs)feature extendedπ-conjugation and ordered stacking sequence,showing great promise for high-performance photocatalysis.Periodic atomic frameworks of 2D COFs facilita... Two-dimensional covalent organic frameworks(2D COFs)feature extendedπ-conjugation and ordered stacking sequence,showing great promise for high-performance photocatalysis.Periodic atomic frameworks of 2D COFs facilitate the in-plane photogenerated charge transfer,but the precise ordered alignment is limited due to the non-covalentπ-stacking of COF layers,accordingly hindering out-of-plane transfer kinetics.Herein,we address a chiral induction method to construct a parallelly superimposed stacking chiral COF ultrathin shell on the support of SiO_(2) microsphere.Compared to the achiral COF analogues,the chiral COF shell with the parallel AA-stacking structure is more conducive to enhance the built-in electric field and accumulates photogenerated electrons for the rapid migration,thereby affording superior photocatalytic performance in hydrogen evolution from water splitting.Taking the simplest ketoenamine-linked chiral COF as a shell of SiO_(2) particle,the resulting composite exhibits an impressive hydrogen evolution rate of 107.1 mmol g^(-1)h^(-1)along with the apparent quantum efficiency of 14.31% at 475 nm.Furthermore,the composite photocatalysts could be fabricated into a film device,displaying a remarkable photocatalytic performance of 178.0 mmol m^(-2)h^(-1)for hydrogen evolution.Our work underpins the surface engineering of organic photocatalysts and illustrates the significance of COF stacking structures in regulating electronic properties. 展开更多
关键词 Covalent organic framework PHOTOCATALYSIS Hydrogen generation Chiral induction Core-shell structure
下载PDF
Modification of contact lenses via metal-organic frameworks for glaucoma treatment
13
作者 Alexey V.Yaremenko Roman O.Melikov +19 位作者 Nadezhda A.Pechnikova Iaroslav B.Belyaev Alina Ringaci Tamara V.Yaremenko Aziz B.Mirkasymov Alexandr A.Tamgin Vladislav I.Rodionov Sofya M.Dolotova Grigory A.Plisko Evgeny D.Semivelichenko Anna S.Rogova Albert R.Muslimov Arina S.Ivkina Dmitry Yu.Ivkin Valery P.Erichev Sergey M.Deyev Sergey E.Avetisov Yongjiang Li Hai-Jun Liu Ivan V.Zelepukin 《Aggregate》 EI CAS 2024年第5期358-370,共13页
The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure.Here,human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonid... The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure.Here,human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonidine for prolonged glaucoma treatment.Various metal-organic frameworks were screened for their attachment to lenses,loading with brimonidine,and drug-release properties.Opti-mized therapeutic ocular lenses conjugated with MIL-101(Cr)frameworks maintain optical transparency and power.Coating of lenses with MIL-101(Cr)nanoparticles reduced brimonidine washout with tears and ensured a gradual and localized release of the drug into the eyeball through the cornea.The hybrid lenses provided a 4.5-fold better decrease in eye pressure,compared by area under the curve(AUC)value to a commercially available brimonidine tartrate solution.Therapeutic lenses did not induce any notable eye irritation or corneal damage in vivo.The newly devel-oped hybrid lenses are expected to provide a robust platform for the therapy and prevention of various ocular diseases. 展开更多
关键词 BRIMONIDINE contact lenses drug delivery GLAUCOMA intraocular pressure metal-organic frameworks NANOPARTICLES
原文传递
Rational design of new in situ reduction of Ni(II)catalytic system for low-cost and large-scale preparation of porous aromatic frameworks
14
作者 Shanshan Wang Yue Wu +3 位作者 Wenxiang Zhang Hao Ren Guangshan Zhu Heping Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期105-113,共9页
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD... Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr. 展开更多
关键词 adsorption carbon material nickel catalysis porous aromatic framework porous organic polymer
下载PDF
Superior Anodic Lithium Storage in Core–Shell Heterostructures Composed of Carbon Nanotubes and Schiff-Base Covalent Organic Frameworks
15
作者 Nan Jiang Mengpei Qi +3 位作者 Yalong Jiang Yin Fan Shiwei Jin Yingkui Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期150-157,共8页
Covalent organic frameworks(COFs)after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites.Here... Covalent organic frameworks(COFs)after undergoing the superlithiation process promise high-capacity anodes while suffering from sluggish reaction kinetics and low electrochemical utilization of redox-active sites.Herein,integrating carbon nanotubes(CNTs)with imine-linked covalent organic frameworks(COFs)was rationally executed by in-situ Schiff-base condensation between 1,1′-biphenyl]-3,3′,5,5′-tetracarbaldehyde and 1,4-diaminobenzene in the presence of CNTs to produce core–shell heterostructured composites(CNT@COF).Accordingly,the redox-active shell of COF nanoparticles around one-dimensional conductive CNTs synergistically creates robust three-dimensional hybrid architectures with high specific surface area,thus promoting electron transport and affording abundant active functional groups accessible for electrochemical utilization throughout the whole electrode.Remarkably,upon the full activation with a superlithiation process,the as-fabricated CNT@COF anode achieves a specific capacity of 2324 mAh g^(−1),which is the highest specific capacity among organic electrode materials reported so far.Meanwhile,the superior rate capability and excellent cycling stability are also obtained.The redox reaction mechanisms for the COF moiety were further revealed by Fourier-transform infrared spectroscopy in conjunction with X-ray photoelectron spectroscopy,involving the reversible redox reactions between lithium ions and C=N groups and gradual electrochemical activation of the unsaturated C=C bonds within COFs. 展开更多
关键词 heterostructured anode core-shell nanostructures carbon nanotubes polymeric Schiff-bases covalent organic frameworks
下载PDF
Atomically dispersed Mn-N_(x) catalysts derived from Mn-hexamine coordination frameworks for oxygen reduction reaction
16
作者 Guoyu Zhong Liuyong Zou +10 位作者 Xiao Chi Zhen Meng Zehong Chen Tingzhen Li Yongfa Huang Xiaobo Fu Wenbo Liao Shaona Zheng Yongjun Xu Feng Peng Xinwen Peng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期114-126,共13页
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst... Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications. 展开更多
关键词 carbon nanosheets ELECTROCATALYST metal-organic frameworks Mn-N_(4) oxygen reduction reaction Zn-air batteries
下载PDF
Construction of 3D porous Cu_(1.81)S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage
17
作者 Chen Chen Hongyu Xue +6 位作者 Qilin Hu Mengfan Wang Pan Shang Ziyan Liu Tao Peng Deyang Zhang Yongsong Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期191-200,共10页
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d... Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode. 展开更多
关键词 copper sulfide nanoparticles porous carbon framework fast charging long-cycle performance sodium-ion full batteries
下载PDF
Elucidating the role of embedding dispersed cobalt sites in nitrogen-doped carbon frameworks in Si-based anodes for stable and superior storage
18
作者 Yueying Chen Ping Li +8 位作者 Mianying Huang Chunlei Wu Qianhong Huang Tingyang Xie Xiaoming Lin Akif Zeb Yongbo Wu Zhiguang Xu Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期180-195,共16页
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s... Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials. 展开更多
关键词 Co nanoparticles Nitrogen doped carbon Silicon Lithium/sodium storage Metal-organic frameworks(MOFs)
下载PDF
Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution
19
作者 Chao Li Shuo Wang +8 位作者 Yuan Liub Xihe Huang Yan Zhuang Shuhong Wu Ying Wang Na Wen Kaifeng Wu Zhengxin Ding Jinlin Long 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期164-175,共12页
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ... Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis. 展开更多
关键词 Covalent organic framework Internal molecular electric field Internal bond electric field PHOTOCATALYSIS Hydrogen evolution
下载PDF
Applications of Metal–Organic Frameworks and Their Derivatives in Electrochemical CO_(2)Reduction 被引量:7
20
作者 Chengbo Li Yuan Ji +8 位作者 Youpeng Wang Chunxiao Liu Zhaoyang Chen Jialin Tang Yawei Hong Xu Li Tingting Zheng Qiu Jiang Chuan Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期72-115,共44页
Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropo... Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropogenic carbon cycle.Among various electrocatalysts for electrochemical CO_(2)reduction,multifunctional metal–organic frameworks(MOFs)have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures.Up to now,great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR),and their corresponding reaction mechanisms have been thoroughly studied.In this review,we summarize the recent progress of applying MOFs and their derivatives in CO_(2)RR,with a focus on the design strategies for electrocatalysts and electrolyzers.We first discussed the reaction mechanisms for different CO_(2)RR products and introduced the commonly applied electrolyzer configurations in the current CO_(2)RR system.Then,an overview of several categories of products(CO,HCOOH,CH_(4),CH_(3)OH,and multi-carbon chemicals)generated from MOFs or their derivatives via CO_(2)RR was discussed.Finally,we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO_(2)reduction.We aim to provide new insights into this field and further guide future research for large-scale applications. 展开更多
关键词 Metal-organic frameworks DERIVATIVES CATALYST CO_(2)reduction reaction ELECTROCATALYSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部