期刊文献+
共找到4,109篇文章
< 1 2 206 >
每页显示 20 50 100
Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
1
作者 Jiaqi Wu Chuanqi Cheng +2 位作者 Shanshan Lu Bin Zhang Yanmei Shi 《Transactions of Tianjin University》 EI CAS 2024年第4期369-379,共11页
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ... N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production. 展开更多
关键词 Oxygen reduction reaction N-doped carbon Reaction path Structural evolution oxidation in reduction
下载PDF
Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO_(2)reduction and aryl alcohol oxidation
2
作者 Jian Lei Nan Zhou +3 位作者 Shuaikang Sang Sugang Meng Jingxiang Low Yue Li 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期163-173,共11页
Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles... Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications. 展开更多
关键词 Photocatalysis Atomically-dispersed metal SINGLE-ATOM CO_(2)reduction Aryl alcohol oxidation
下载PDF
Acetic acid-assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward high-efficiency oxygen reduction and ethanol oxidation electrocatalysis 被引量:5
3
作者 Danye Liu Yu Zhang +5 位作者 Hui Liu Peng Rao Lin Xu Dong Chen Xinlong Tian Jun Yang 《Carbon Energy》 SCIE CSCD 2023年第7期112-120,共9页
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here... Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst. 展开更多
关键词 compressive strain effect DEALLOYING ELECTROCATALYSIS ethanol oxidation reaction oxygen reduction reaction
下载PDF
Metal-organic framework-based materials as key components in electrocatalytic oxidation and reduction reactions
4
作者 Soheila Sanati Ali Morsali Hermenegildo García 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期540-567,I0014,共29页
Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion,fuel production,and environmental protection.Electrode processes such as different oxidation and re... Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion,fuel production,and environmental protection.Electrode processes such as different oxidation and reduction reactions play a vital and significant role in these technologies.In this regard,efficient,inexpensive,and stable electrocatalysts capable can significantly promote electrochemical reactions.Unique features of metal–organic frameworks(MOFs)such as their high porosity,tunable structure,size,and pore shape,high surface area,and redox properties have introduced them as an ideal electrocatalyst candidate.This review is thus aimed at elucidating the role of MOF-based materials(pristine,derivatives and composites)as efficient electrocatalysts in energy and sensing-related oxidation and reduction reactions such as oxygen reduction reaction(ORR),hydrogen oxidation reaction(HOR),carbon dioxide reduction reaction(CO_(2)RR),urea oxidation reaction(UOR),alcohol oxidation reaction(AOR),nitrogen reduction reaction(NRR),and glucose oxidation reaction(GOR)in advanced energy and sensing devices.Also,the structure–property relationship of the electrocatalyst was elaborated for each electrocatalytic reaction.Finally,perspectives on the potential research topics for practical use of MOF-based electrocatalysts are addressed.The present review can improve the interest in MOF-based electrocatalysts to study different oxidation and reduction reactions in energy and sensing systems. 展开更多
关键词 Metal-organic frameworks ELECTROCATALYST oxidation reaction reduction reaction
下载PDF
Regulation of excitation energy transfer in Sb-alloyed Cs_(4)MnBi_(2)Cl_(12) perovskites for efficient CO_(2) photoreduction to CO and water oxidation toward H_(2)O_(2)
5
作者 Haiwen Wei Zhen Li +7 位作者 Honglei Wang Yang Yang Pengfei Cheng Peigeng Han Ruiling Zhang Feng Liu Panwang Zhou Keli Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期18-24,I0001,共8页
Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,... Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,issues of the poor charge transfer still remain one of the main obstacles limiting their performance due to the overwhelming radiative and nonradiative charge-carrier recombination losses.Herein,Pb-free Sb-alloyed all-inorganic quadruple perovskite Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12)(0≤x≤1)is synthesized as efficient photocatalyst.By Sb alloying,the undesired relaxation of photogenerated electrons from conduction band to emission centers of[MnCl6]^(4-)is greatly suppressed,resulting in a weakened PL emission and enhanced charge transfer for photocatalyst.The ensuing Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12) photocatalyst accomplishes efficient conversion of CO_(2)into CO,accompanied by a surprising production of H_(2)O_(2),a high valueadded product associated with water oxidation.By optimizing Sb^(3+) concentration,a high CO evolution rate of 35.1μmol g^(-1)h^(-1)is achieved,superior to most other Pb and Pb-free halide perovskites.Our findings provide new insights into the mixed-cation alloying strategies for improved photocatalytic performance of Pb-free perovskites and shed light on the rational design of robust band structure toward efficient energy transfer. 展开更多
关键词 Pb-free perovskites Energy band modulation Perovskite photocatalysis photocatalytic CO_(2)reduction Water oxidation to H_(2)O_(2)
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
6
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
7
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass
8
作者 Xi Liu Yifan Wang +2 位作者 Zhiwei Dai Daihong Gao Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期705-729,共25页
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(... Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products. 展开更多
关键词 Electrochemical reduction of CO_(2) Formic acid oxidative conversion of biomass LIGNOCELLULOSE Coupled system
下载PDF
Experimental Study on Ammonia Co-Firing with Coal for Carbon Reduction in the Boiler of a 300-MW Coal-Fired Power Station
9
作者 Qifu Lin Wangping Sun +15 位作者 Haiyan Li Yangjiong Liu Yuwei Chen Chengzhou Liu Yiman Jiang Yu Cheng Ning Ma Huaqing Ya Longwei Chen Shidong Fang Hansheng Feng Guang-Nan Luo Jiangang Li Kaixin Xiang Jie Cong Cheng Cheng 《Engineering》 SCIE EI CAS CSCD 2024年第9期247-259,共13页
To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the s... To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction. 展开更多
关键词 Coal-fired boiler Coal mixing with ammonia Ammonia-coal co-firing Nitrogen oxide(NO_(x)) CO_(2)reduction Boiler thermal efficiency
下载PDF
FCF-LDH/BiVO_(4)with synergistic effect of physical enrichment and chemical adsorption for efficient reduction of nitrate
10
作者 Yajie Bai Zhenyuan Fang +5 位作者 Yong Lei Lijing Liu Huaiquan Zhao Hongye Bai Weiqiang Fan Weidong Shi 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1112-1121,共10页
Photoelectrochemical NO_(3)^(-)reduction(PEC NITRR)not only provides a promising solution for promoting the global nitrogen cycle,but also converts NO_(3)^(-)to the important chemicals(NH_(3)).However,it is still a gr... Photoelectrochemical NO_(3)^(-)reduction(PEC NITRR)not only provides a promising solution for promoting the global nitrogen cycle,but also converts NO_(3)^(-)to the important chemicals(NH_(3)).However,it is still a great challenge to prepare catalysts with excellent NO_(3)^(-)adsorption/activation capacity to achieve high NITRR.Herein,we designed a novel Fe^(2+)~Cu^(2+)Fe^(3+)LDH/BiVO_(4)(FCF-LDH/BVO)catalyst with synergistic effect of chemical adsorption and physical enrichment.Fe^(2+)in FCF-LDH/BVO provides the rich Lewis acid sites for the adsorption of NO_(3)^(-),and the appropriate layer spacing of FCF-LDH further promotes the physical enrichment of NO_(3)^(-)in its interior,thus realizing the effective contact between NO_(3)^(-)and active sites(Fe^(2+)).FCF-LDH/BVO showed excellent NH_(3)production performance(FE_(NH_(3))=66.1%,r_(NH_(3))=13.8μg h^(-1)cm^(-2))and selectivity(FE_(NO_(2)^(-))=2.5%,r_(NO_(2)^(-))=4.9μg h^(-1)cm^(-2))in 0.5 mol L^(-1)Na_(2)SO_(4)electrolyte.In addition,FCF-LDH/BVO maintains the desirable PEC stability for six cycle experiments,showing great potential for practical application.The^(14)NO_(3)^(-)and^(15)NO_(3)^(-)isotope test provides strong evidence for further verification of the origin of N in the generated NH_(3).This LDH catalyst has a great potential in PEC removal of NO_(3)^(-)from groundwater. 展开更多
关键词 LDH Lewis acid sites Physical enrichment Photoelectrochemical NO_(3)^(-)reduction Ammonia
下载PDF
Effects of mechanical activation and oxidation-reduction on hydrochloric acid leaching of Panxi ilmenite concentration 被引量:6
11
作者 谭平 胡慧萍 张黎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1414-1421,共8页
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ... The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min. 展开更多
关键词 ilmenite concentration mechanical activation oxidation reduction hydrochloric acid leaching
下载PDF
Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO_(2) to C_(2+) products 被引量:6
12
作者 Zi-Yang Zhang Hao Tian +3 位作者 Lei Bian Shi-Ze Liu Yuan Liu Zhong-Li Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期90-97,I0004,共9页
The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high c... The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR. 展开更多
关键词 Electrochemical CO_(2)reduction reaction C_(2+)products Cu-Zn alloy Cu-Zn aluminate oxide Interface
下载PDF
A core-shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate 被引量:2
13
作者 Hui Liu Jingsha Li +5 位作者 Feng Du Luyun Yang Shunyuan Huang Jingfeng Gao Changming Li Chunxian Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1619-1629,共11页
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac... Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance. 展开更多
关键词 Electrocatalytic nitrate reduction Ammonia production Core–shell heterostructure Copper oxides nanowire arrays Cobalt oxidesflocs
下载PDF
Activation of Transition Metal(Fe,Co and Ni)-Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO_(2) Reduction Reaction 被引量:1
14
作者 Yi Cheng Jinfan Chen +7 位作者 Chujie Yang Huiping Wang Bernt Johannessen Lars Thomsen Martin Saunders Jianping Xiao Shize Yang San Ping Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期253-263,共11页
The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are u... The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are urgently required.Transition metal oxides such as CoO_(x),FeO_(x),and NiO_(x)are low-cost,low toxicity,and abundant materials for a wide range of electrochemical reactions,but are almost inert for CO_(2)RR.Here,we report for the first time that nitrogen doped carbon nanotubes(N-CNT)have a surprising activation effect on the activity and selectivity of transition metal-oxide(MO_(x)where M=Fe,Ni,and Co)nanoclusters for CO_(2)RR.MO_(x)supported on N-CNT,MO_(x)/N-CNT,achieves a CO yield of 2.6–2.8 mmol cm−2 min−1 at an overpotential of−0.55 V,which is two orders of magnitude higher than MO_(x)supported on acid treated CNTs(MO_(x)/O-CNT)and four times higher than pristine N-CNT.The faraday efficiency for electrochemical CO_(2)-to-CO conversion is as high as 90.3%at overpotential of 0.44 V.Both in-situ XAS measurements and DFT calculations disclose that MO_(x)nanoclusters can be hydrated in CO_(2)saturated KHCO_(3),and the N defects of N-CNT effectively stabilize these metal hydroxyl species under carbon dioxide reduction reaction conditions,which can split the water molecules and provide local protons to inhibit the poisoning of active sites under carbon dioxide reduction reaction conditions. 展开更多
关键词 activation effect electrochemical CO_(2)reduction reaction N defect proton-coupled electron transfer process transition metal oxide nanocluster
下载PDF
Hydrothermal synthesis of titanium-supported nanoporous palladium-copper electrocatalysts for formic acid oxidation and oxygen reduction reaction
15
作者 易清风 肖兴中 刘云清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1184-1190,共7页
Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. ... Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti. 展开更多
关键词 Pd electrode Pd-Cu electrode formic acid oxidation oxygen reduction reaction NANOPARTICLE ELECTROCATALYSIS
下载PDF
Rapid and durable oxygen reduction reaction enabled by a perovskite oxide with self-cleaning surface
16
作者 Shengli Pang Yifan Song +7 位作者 Meng Cui Xin Tang Chao Long Lingfeng Ke Gongmei Yang Ting Fang Yong Guan Chonglin Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期333-340,I0010,共9页
The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we... The growth of electrochemically inert segregation layers on the surface of solid oxide fuel cell cathodes has become a bottleneck restricting the development of perovskite-structured oxygen reduction catalysts.Here,we report a new discovery in which enriched Ba and Fe ions on the near-surface of Nd_(1/2)Ba_(1/2)Co_(1/3)Fe_(1/3)Mn_(1/3)O_(3-δ)spontaneously agglomerate into dispersed Ba_(5)Fe_(2)O_(8) nanoparticles and maintain a highly active and durable perovskite structure on the surface.This unique surface selfcleaning phenomenon is related to the low average potential energy of Ba_(5)Fe_(2)O_(8),which is grown on the near-surface layer.The electrochemically inert Ba_(5)Fe_(2)O_(8) segregation layer on the near-surface of the perovskite catalyst achieves self-cleaning by regulating the formation energy of enriched metal oxides.This self-cleaned perovskite surface exhibits an ultrafast oxygen exchange rate,high catalytic activity for the oxygen reduction reaction,and good adaptability to the actual working conditions of solid oxide fuel cell stacks.This study paves a new way for overcoming the stubborn problem of perovskite catalyst surface deactivation and enriches the scientific knowledge of surface catalysis. 展开更多
关键词 Surface chemistry Energy materials ELECTROCATALYSIS Perovskite oxide Oxygen reduction reaction Solid oxide fuel cells
下载PDF
Sub-2 nm mixed metal oxide for electrochemical reduction of carbon dioxide to carbon monoxide
17
作者 Devina Thasia Wijaya Andi Haryanto +2 位作者 Hyun Woo Lim Kyoungsuk Jin Chan Woo Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期303-310,共8页
Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction... Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface. 展开更多
关键词 Carbon dioxide reduction Mixed metal oxide NANOALLOY Carbon monoxide Metal-organic framework
下载PDF
Tuning the charge distribution and crystal field of iron single atoms via iron oxide integration for enhanced oxygen reduction reaction in zinc-air batteries
18
作者 Feifei Zhang Yinlong Zhu +9 位作者 Yijun Zhong Jing Zou Yu Chen Lianhai Zu Zhouyou Wang Jack Jon Hinsch Yun Wang Lian Zhang Zongping Shao Huanting Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期154-163,I0006,共11页
Metal-air batteries face a great challenge in developing efficient and durable low-cost oxygen reduction reaction(ORR)electrocatalysts.Single-atom iron catalysts embedded into nitrogen doped carbon(Fe-N-C)have emerged... Metal-air batteries face a great challenge in developing efficient and durable low-cost oxygen reduction reaction(ORR)electrocatalysts.Single-atom iron catalysts embedded into nitrogen doped carbon(Fe-N-C)have emerged as attractive materials for potential replacement of Pt in ORR,but their catalytic performance was limited by the symmetrical electronic structure distribution around the single-atom Fe site.Here,we report our findings in significantly enhancing the ORR performance of Fe-N-C by moderate Fe_(2)O_(3) integration via the strong electronic interaction.Remarkably,the optimized catalyst(M-Fe_(2)O_(3)/Fe_(SA)@NC)exhibits excellent activity,durability and good tolerance to methanol,outperforming the benchmark Pt/C catalyst.When M-Fe_(2)O_(3)/Fe_(SA)@NC catalyst was used in a practical zinc-air battery assembly,peak power density of 155 mW cm^(-2)and specific capacity of 762 mA h g_(Zn)^(-1)were achieved and the battery assembly has shown superior cycling stability over a period of 200 h.More importantly,theoretical studies suggest that the introduction of Fe_(2)O_(3) can evoke the crystal field alteration and electron redistribution on single Fe atoms,which can break the symmetric charge distribution of Fe-N_(4) and thereby optimize the corresponding adsorption energy of intermediates to promote the O_(2)reduction.This study provides a new pathway to promote the catalytic performance of single-atom catalysts. 展开更多
关键词 Single-atom catalysts oxide nanoclusters Electronic interactions Oxygen reduction reaction Zn-air battery
下载PDF
Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity
19
作者 Zhaoyang Wang Xiaobin Liao +10 位作者 Min Zhou Fuzhi Huang Kwadwo Asare Owusu Jiantao Li Zifeng Lin Qi Sun Xufeng Hong Congli Sun Yibing Cheng Yan Zhao Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期288-298,共11页
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel... Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel cells,metal-air batteries,and water electrolysis system involving hydrogen and value-added organic products generation,but they remain a great challenge.Herein,a bifunctional electrocatalyst is prepared by anchoring CuS/NiS_(2)nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene(Cu_(1)Ni_(2)-S/G)for ORR and AOR.Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies,Cu_(1)Ni_(2)-S/G achieves dramatically enhanced ORR activity with long term stability.Meanwhile,when ethanol is utilized as an oxidant for AOR,an ultralow potential(1.37 V)at a current density of 10 mA cm-2 is achieved,simultaneously delivering a high Faradaic efficiency of 96%for ethyl acetate production.Cu_(1)Ni_(2)-S/G also exhibits catalytic activity for other alcohols electrooxidation process,indicating its multifunctionality.This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering,but also opens up new avenues for the construction of a self-driven biomass electrocatalysis system for the generation of value-added organic products and hydrogen under ambient conditions. 展开更多
关键词 alcohols oxidation reaction HETEROINTERFACE metal sulfide oxygen reduction reaction sulfur vacancies
下载PDF
In operando-formed interface between silver and perovskite oxide for efficient electroreduction of carbon dioxide to carbon monoxide
20
作者 Xinhao Wu Yanan Guo +11 位作者 Yuxing Gu Fenghua Xie Mengran Li Zhiwei Hu Hong-Ji Lin Chih-Wen Pao Yu-Cheng Huang Chung-Li Dong Vanessa KPeterson Ran Ran Wei Zhou Zongping Shao 《Carbon Energy》 SCIE CSCD 2023年第4期81-93,共13页
Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic perf... Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic performance and electrochemical behavior of complex metal oxides,especially perovskite oxides,is rarely reported.Here,the inorganic perovskite oxide Ag-doped(La_(0.8)Sr_(0.2))_(0.95)Ag_(0.05)MnO_(3-δ)(LSA0.05M)is reported as an efficient electrocatalyst for ECR to CO for the first time,which exhibits a Faradaic efficiency(FE)of 84.3%,a remarkable mass activity of 75Ag^(-1)(normalized to the mass of Ag),and stability of 130 h at a moderate overpotential of 0.79 V.The LSA0.05M catalyst experiences structure reconstruction during ECR,creating the in operando-formed interface between the perovskite and the evolved Ag phase.The evolved Ag is uniformly distributed with a small particle size on the perovskite surface.Theoretical calculations indicate the reconstruction of LSA0.05M during ECR and reveal that the perovskite-Ag interface provides adsorption sites for CO_(2) and accelerates the desorption of the*CO intermediate to enhance ECR.This study presents a novel high-performance perovskite catalyst for ECR andmay inspire the future design of electrocatalysts via the in operando formation of metal-metal oxide interfaces. 展开更多
关键词 electrochemical CO_(2)reduction faradaic efficiencies interfaces perovskite oxides
下载PDF
上一页 1 2 206 下一页 到第
使用帮助 返回顶部