Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an...Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.展开更多
Background:Ischemic stroke is a disease characterized by the damage of brain tissue due to insufficient blood supply.The neuronal necrosis caused by oxidative stress during the acute phase of ischemic stroke leads to ...Background:Ischemic stroke is a disease characterized by the damage of brain tissue due to insufficient blood supply.The neuronal necrosis caused by oxidative stress during the acute phase of ischemic stroke leads to serious consequences,including blood-brain barrier disruption and vascular aging.The Kelch-like ECH-associated protein 1(KEAP1),is a key switch of antioxidative system in human body.Until now,there is still a lack of effective treatment to ischemic stroke.Methods:We developed scutellarin-based liposomes for treating ischemic stroke injury caused neuronal damage.Results:The results showed that scutellarin could directly bind to KEAP1 protein,and the Kd was 26.1μM.The scutellarin-based liposomes significantly reduced cellular reactive oxygen species(ROS)levels.It could also upregulate the protein expression level of nuclear factor E2-related factor 2(NRF2),which is the substrate protein of KEAP1.Next,both the mRNA and protein expression level of the NRF2 downstream anti-oxidative element,heme oxygenase 1(HO-1)and NAD(P)H quinone dehydrogenase 1(NQO1)were promoted.Furthermore,the coimmunoprecipitation(Co-IP)and hydrogen-deuterium exchange mass spectrometry(HDX-MS)revealed that scutellarin directly bound to KEAP1’s Kelch domain,interrupting the interaction between KEAP1 and NRF2.Conclusion:Our work indicates that the scutellarin-based liposomes might be a promising therapeutic approach for ischemic stroke induced neuronal necrosis.展开更多
Nickel(Ni)toxicity significantly impairs plant growth,photosynthesis,and metabolism by inducing oxidative stress.This study evaluates the potential of exogenous Alpha-Ketoglutarate(AKG)in mitigating Ni-induced stress ...Nickel(Ni)toxicity significantly impairs plant growth,photosynthesis,and metabolism by inducing oxidative stress.This study evaluates the potential of exogenous Alpha-Ketoglutarate(AKG)in mitigating Ni-induced stress in Peganum harmala L.Seedlings were exposed to 0,200,500,and 750μM NiCl2,with or without AKG supplementation.Under 750μM Ni stress,dry weight(DW)decreased by 33.7%,tissue water content(TWC)by 39.9%,and chlorophyll a and total chlorophyll levels were reduced by 17%and 15%,respectively.Ni exposure also significantly increased secondary metabolite production,with leaf anthocyanin content rising by 131%,and superoxide dismutase(SOD)and catalase(CAT)activities increasing by 228%and 53%,respectively,in roots at 500μM Ni.AKG treatment alleviated Ni toxicity by enhancing TWC by 39%and promoting root and shoot growth.Additionally,AKG treatment boosted the synthesis of phenolic compounds and flavonoids,contributing to improved tolerance against Ni stress.These findings demonstrate the potential of AKG in enhancing Ni tolerance in P.harmala,suggesting its promising role in bioremediation of metal-contaminated soils.This is the first study to report the beneficial effects of exogenous AKG in alleviating nickel toxicity in P.harmala L.,offering a new approach for improving plant resilience to heavy metal stress.展开更多
Objective High-altitude hypoxia exposure often damages hippocampus-dependent learning and memory.Nogo-A is an important axonal growth inhibitory factor.However,its function in high-altitude hypoxia and its mechanism o...Objective High-altitude hypoxia exposure often damages hippocampus-dependent learning and memory.Nogo-A is an important axonal growth inhibitory factor.However,its function in high-altitude hypoxia and its mechanism of action remain unclear.Methods In an in vivo study,a low-pressure oxygen chamber was used to simulate high-altitude hypoxia,and genetic or pharmacological intervention was used to block the Nogo-A/NgR1 signaling pathway.Contextual fear conditioning and Morris water maze behavioral tests were used to assess learning and memory in rats,and synaptic damage in the hippocampus and changes in oxidative stress levels were observed.In vitro,SH-SY5Y cells were used to assess oxidative stress and mitochondrial function with or without Nogo-A knockdown in Oxygen Glucose-Deprivation/Reperfusion(OGD/R)models.Results Exposure to acute high-altitude hypoxia for 3 or 7 days impaired learning and memory in rats,triggered oxidative stress in the hippocampal tissue,and reduced the dendritic spine density of hippocampal neurons.Blocking the Nogo-A/NgR1 pathway ameliorated oxidative stress,synaptic damage,and the learning and memory impairment induced by high-altitude exposure.Conclusion Our results demonstrate the detrimental role of Nogo-A protein in mediating learning and memory impairment under high-altitude hypoxia and suggest the potential of the Nogo-A/NgR1 signaling pathway as a crucial therapeutic target for alleviating learning and memory dysfunction induced by high-altitude exposure.展开更多
BACKGROUND Peripheral neuropathy caused by diabetes is closely related to the vicious cycle of oxidative stress and mitochondrial dysfunction resulting from metabolic abnormalities.The effects mediated by the silent i...BACKGROUND Peripheral neuropathy caused by diabetes is closely related to the vicious cycle of oxidative stress and mitochondrial dysfunction resulting from metabolic abnormalities.The effects mediated by the silent information regulator type 2 homolog-1(SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α(PGC-1α)axis present new opportunities for the treatment of type 2 diabetic peripheral neuropathy(T2DPN),potentially breaking this harmful cycle.AIM To validate the effectiveness of electroacupuncture(EA)in the treatment of T2DPN and investigate its potential mechanism based on the SIRT1/PGC-1αaxis.METHODS The effects of EA were evaluated through assessments of metabolic changes,morphological observations,and functional examinations of the sciatic nerve,along with measurements of inflammation and oxidative stress.Proteins related to the SIRT1/PGC-1αaxis,involved in the regulation of mitochondrial biogenesis and antioxidative stress,were detected in the sciatic nerve using Western blotting to explain the underlying mechanism.A counterevidence group was created by injecting a SIRT1 inhibitor during EA intervention to support the hypothesis.RESULTS In addition to diabetes-related metabolic changes,T2DPN rats showed significant reductions in pain threshold after 9 weeks,suggesting abnormal peripheral nerve function.EA treatment partially restored metabolic control and reduced nerve damage in T2DPN rats.The SIRT1/PGC-1αaxis,which was downregulated in the model group,was upregulated by EA intervention.The endogenous antioxidant system related to the SIRT1/PGC-1αaxis,previously inhibited in diabetic rats,was reactivated.A similar trend was observed in inflammatory markers.When SIRT1 was inhibited in diabetic rats,these beneficial effects were abolished.CONCLUSION EA can alleviate the symptoms of T2DNP in experimental rats,and its effects may be related to the mitochondrial biogenesis and endogenous antioxidant system mediated by the SIRT1/PGC-1αaxis.展开更多
AIM: To study the protective effect of a natural antioxidant, melatonin, against multistress condition induced lipid peroxidation v/a determination of gastric damage and plasma malondialdehyde (MDA) level by high p...AIM: To study the protective effect of a natural antioxidant, melatonin, against multistress condition induced lipid peroxidation v/a determination of gastric damage and plasma malondialdehyde (MDA) level by high performance liquid chromatography in rats. METHODS: We compared indomethacin-induced gastric damage and MDA plasma level in three groups of rats: unoperated, bile duct ligated and sham-operated and evaluated the role of the melatonin on gastric damage and plasma MDA level. Indomethacin and melatonin were injected intraperitoneally in doses of 50 mg/kg and 20 mg/kg, respectively. Animals were killed 4 h after indomethacin injection. RESULTS: Indomethacin induced more severe gastric damage and plasma MDA level in bile duct ligated animals was significantly higher (3.1±0.04 μmol/L) than sham (2.8±0.04 μmol/L) and unoperated animals (1.4±0.08 μmol/L). Pretreatment with melatonin reduced indomethacin-induced gastric damage and plasma MDA level. CONCLUSION: Considering the results of this study, we suggest that in multistress conditions the intensity of gastric damage and the plasma MDA level are great and melatonin reduces the negative effect of lipid peroxidation and cell damage by oxidative stress in multistress conditions due to its antioxidizing activity.展开更多
Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In t...Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In this study,the antiapoptotic and anti-oxidative properties of lithospermic acid(LSA)on BMSCs exposed to hydrogen peroxide(H2O2)were investigated.Methods In the present study,we used H2O2 to induce oxidative injury on BMSCs.Reactive oxygen species(ROS)staining and superoxide dismutase(SOD)assay were performed.The expression levels of phosphorylated(p)-Akt,Bcl-2-associated X protein(Bax)and B-cell lymphoma 2(Bcl-2)were measured by Western blotting.Results LSA can significantly reduce H2O2-induced chromatin condensation and intracellular ROS levels,enhance the activity of SOD.Moreover,it can alleviate H2O2-induced apoptosis by upregulating Bcl-2 and p-Akt,down-regulating Bax,which was blocked by the PI3K inhibitor,LY294002.Conclusions Our results demonstrated that pretreatment with LSA could attenuate oxidative stress-induced apoptosis in BMSCs,which may be related with anti-oxidant properties and partly via modulating PI3K/Akt pathway,suggesting that pharmacologically manipulating BMSCs with LSA could be a promising drug to increase cell survival for BMSCs transplantation in musculoskeletal disorders of orthopaedic.展开更多
Germinating wheat (Triticum aestivum L.) seeds were exposed to CdCI2 (50, 100 and 200 μM) for 48 h and some aspects of oxidative metabolism was assessed in the embryonic tissues. The germination percentage and th...Germinating wheat (Triticum aestivum L.) seeds were exposed to CdCI2 (50, 100 and 200 μM) for 48 h and some aspects of oxidative metabolism was assessed in the embryonic tissues. The germination percentage and the soluble protein content of the embryonic tissues were found to decrease with increasing of Cd concentration. There was elevation in superoxide dismutase (SOD) and decline in catalase (CAT) and peroxidase (POX) activities. The increasing of lipid peroxidation levels indicated the prevalence of oxidative stress in the tissues which was probably due to the alteration of antioxidative enzymes activities. The adding of ascorbate, along with CdCl2, has resulted in restoration of the Cd induced decline in CAT activity. Weakening in H2O2 detoxification system seems to be the principal reason behind Cd induced oxidative stress in germinating seeds. Thus, imposition of oxidative stress might be the consequence of cadmium stress and this finding may help in elucidating the mechanisms underlying cadmium mediated toxicity in germinating seeds.展开更多
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok...Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.展开更多
Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord ...Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.展开更多
Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzhe...Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.展开更多
BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical ...BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical intervention stands as a cornerstone treatment for oral cancer patients,it carries the risk of incomplete treatment or high rates of postoperative recurrence.Hence,a multifaceted approach incorporating diverse treatment modalities is essential to enhance patient prognosis.AIM To analyze the application effect of Tongluo Jiedu prescription as adjuvant therapy and its influence on patient prognosis in patients with oral cancer.METHODS Eighty oral cancer patients in our hospital were selected and divided into the observation group and control group by a random number table.The control group was treated with continuous arterial infusion chemotherapy of cisplatin and 5-fluorouracil.The observation group was additionally given Tongluo Jiadu prescription.The inflammatory stress level,peripheral blood T-cell subsets,and immune function of the two groups were subsequently observed.SPSS 21.0 was used for data analysis.RESULTS The observation group demonstrated lower levels of interleukin-6 and C-reactive protein,and a higher level of tumor necrosis factor in comparison to the control group.After treatment,the immune function in the observation group was significantly better than in the control group.CONCLUSION Tongluo Jiedu prescription can improve the immune function and oxidative stress level of patients with oral cancer and accelerate the recovery process.展开更多
Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)duri...Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)during short-term heat stress(HS)and recovery periods.Eight Holstein calves were randomly assigned to four treatment groups:no mineral supplementation(Con),inorganic minerals(IM),organic minerals(OM),and high-concentration organic minerals(HOM)and two thermal environments(HS and recovery)using 4×2 factorial arrangement in a crossover design of four periods of 35 d.Calves were maintained in a temperature-controlled barn.The experimental period consisted of 14 d of HS,14 d of recovery condititon,and a 7-d washing period.Results Body temperature and respiration rate were higher in HS than in the recovery conditions(P<0.05).Selenium concentration in serum was high in the HOM-supplemented calves in both HS(90.38μg/dL)and recovery periods(102.00μg/dL)(P<0.05).During the HS period,the serum cortisol was 20.26 ng/mL in the HOM group,which was 5.60 ng/mL lower than in the control group(P<0.05).The total antioxidant status was the highest in the OM group(2.71 mmol Trolox equivalent/L),followed by the HOM group during HS,whereas it was highest in the HOM group(2.58 mmol Trolox equivalent/L)during the recovery period(P<0.05).Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods,whereas SOD and GPX levels were not significantly affected(P>0.05).The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation;however,temperature-induced microbial structure shifts were indicated(PERMANOVA:P<0.05).At the phylum level,Firmicutes and Actinobacteria decreased,whereas Fibrobacteres,Spirochaetes,and Tenericutes increased(P<0.05),under HS conditions.The genus Treponema increased under HS conditions,while Christensenella was higher in recovery conditions(P<0.05).Conclusion HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves,suggesting that high organic mineral supplementation may alleviate the adverse effects of HS.展开更多
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de...Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.展开更多
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal je...BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal jejunal bypass(DJB)surgery significantly improves brain glucose metabolism in T2DM rats,the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear.AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats.METHODS A T2DM rat model was induced via a high-glucose and high-fat diet,combined with a low-dose streptozotocin injection.T2DM rats were divided into DJB operation and Sham operation groups.DJB surgical intervention was carried out on T2DM rats.The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis.Proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry,quantitative real-time PCR,Western blotting,and immunofluorescence.RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery,compared to the T2DM-Sham groups of rats.Oxidative stress-related proteins(glucagon-like peptide 1 receptor,Nrf2,and HO-1)were significantly increased(P<0.05)in the hypothalamus of rats with T2DM after DJB surgery.DJB surgery significantly reduced(P<0.05)hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin(IL)-1βand IL-6.DJB surgery significantly reduced(P<0.05)the expression of factors related to neuronal injury(glial fibrillary acidic protein and Caspase-3)in the hypothalamus of T2DM rats and upregulated(P<0.05)the expression of neuroprotective factors(C-fos,Ki67,Bcl-2,and BDNF),thereby reducing hypothalamic injury in T2DM rats.CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.展开更多
Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the arti...Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the article titled“Nε-carboxymethyl-lysine and inflammatory cytokines,markers,and mediators of coronary artery disease progression in diabetes”,published in the World Journal of Diabetes in 2024.This work directs us to reflect on the role of advanced glycation end products,which are pro-inflammatory products arising from the metabolism of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyllysine(NML).Recent studies have linked high levels of pro-inflammatory agents with the development of coronary artery disease(CAD),especially tumor necrosis factor alpha,interleukins,and C-reactive protein.These inflammatory agents increase the production of reactive oxygen species(ROS),of which people with diabetes are known to have an increased production.The increase in ROS promotes lipid peroxidation,which causes damage to myocytes,promoting myocardial damage.Furthermore,oxidative stress induces the binding of NML to its receptor RAGE,which in turn activates the nuclear factor-kB,and consequently,inflammatory cytokines.These inflammatory cytokines induce endothelial dysfunction,with increased expression of adhesion molecules,changes in endothelial permeability and changes in the expression of nitric oxide.In this sense,the therapeutic use of monoclonal antibodies(inflammatory reducers such as statins and sodium-glucose transport inhibitors)has demonstrated positive results in the regression of atherogenic plaques and consequently CAD.On the other hand,many studies have demonstrated a relationship between mitochondrial dynamics,diabetes,and cardiovascular diseases.This link occurs since ROS have their origin in the imbalance in glucose metabolism that occurs in the mitochondrial matrix,and this imbalance can have its origin in inadequate diet as well as some pathologies.Photobiomodulation(PBM)has recently been considered a possible therapeutic agent for cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress.In this sense,therapies such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with cardiovascular diseases.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金Supported by American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSand NIH ARRA.
文摘Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
文摘Background:Ischemic stroke is a disease characterized by the damage of brain tissue due to insufficient blood supply.The neuronal necrosis caused by oxidative stress during the acute phase of ischemic stroke leads to serious consequences,including blood-brain barrier disruption and vascular aging.The Kelch-like ECH-associated protein 1(KEAP1),is a key switch of antioxidative system in human body.Until now,there is still a lack of effective treatment to ischemic stroke.Methods:We developed scutellarin-based liposomes for treating ischemic stroke injury caused neuronal damage.Results:The results showed that scutellarin could directly bind to KEAP1 protein,and the Kd was 26.1μM.The scutellarin-based liposomes significantly reduced cellular reactive oxygen species(ROS)levels.It could also upregulate the protein expression level of nuclear factor E2-related factor 2(NRF2),which is the substrate protein of KEAP1.Next,both the mRNA and protein expression level of the NRF2 downstream anti-oxidative element,heme oxygenase 1(HO-1)and NAD(P)H quinone dehydrogenase 1(NQO1)were promoted.Furthermore,the coimmunoprecipitation(Co-IP)and hydrogen-deuterium exchange mass spectrometry(HDX-MS)revealed that scutellarin directly bound to KEAP1’s Kelch domain,interrupting the interaction between KEAP1 and NRF2.Conclusion:Our work indicates that the scutellarin-based liposomes might be a promising therapeutic approach for ischemic stroke induced neuronal necrosis.
基金Researchers Supporting Project No.(RSP2025R390),King Saud University,Riyadh,Saudi Arabia.
文摘Nickel(Ni)toxicity significantly impairs plant growth,photosynthesis,and metabolism by inducing oxidative stress.This study evaluates the potential of exogenous Alpha-Ketoglutarate(AKG)in mitigating Ni-induced stress in Peganum harmala L.Seedlings were exposed to 0,200,500,and 750μM NiCl2,with or without AKG supplementation.Under 750μM Ni stress,dry weight(DW)decreased by 33.7%,tissue water content(TWC)by 39.9%,and chlorophyll a and total chlorophyll levels were reduced by 17%and 15%,respectively.Ni exposure also significantly increased secondary metabolite production,with leaf anthocyanin content rising by 131%,and superoxide dismutase(SOD)and catalase(CAT)activities increasing by 228%and 53%,respectively,in roots at 500μM Ni.AKG treatment alleviated Ni toxicity by enhancing TWC by 39%and promoting root and shoot growth.Additionally,AKG treatment boosted the synthesis of phenolic compounds and flavonoids,contributing to improved tolerance against Ni stress.These findings demonstrate the potential of AKG in enhancing Ni tolerance in P.harmala,suggesting its promising role in bioremediation of metal-contaminated soils.This is the first study to report the beneficial effects of exogenous AKG in alleviating nickel toxicity in P.harmala L.,offering a new approach for improving plant resilience to heavy metal stress.
基金supported by Beijing Natural Science Foundation(No.7232090)the National Natural Science Foundation of China(82101306)the Scientific and Technological Innovation 2030(2021ZD0201100).
文摘Objective High-altitude hypoxia exposure often damages hippocampus-dependent learning and memory.Nogo-A is an important axonal growth inhibitory factor.However,its function in high-altitude hypoxia and its mechanism of action remain unclear.Methods In an in vivo study,a low-pressure oxygen chamber was used to simulate high-altitude hypoxia,and genetic or pharmacological intervention was used to block the Nogo-A/NgR1 signaling pathway.Contextual fear conditioning and Morris water maze behavioral tests were used to assess learning and memory in rats,and synaptic damage in the hippocampus and changes in oxidative stress levels were observed.In vitro,SH-SY5Y cells were used to assess oxidative stress and mitochondrial function with or without Nogo-A knockdown in Oxygen Glucose-Deprivation/Reperfusion(OGD/R)models.Results Exposure to acute high-altitude hypoxia for 3 or 7 days impaired learning and memory in rats,triggered oxidative stress in the hippocampal tissue,and reduced the dendritic spine density of hippocampal neurons.Blocking the Nogo-A/NgR1 pathway ameliorated oxidative stress,synaptic damage,and the learning and memory impairment induced by high-altitude exposure.Conclusion Our results demonstrate the detrimental role of Nogo-A protein in mediating learning and memory impairment under high-altitude hypoxia and suggest the potential of the Nogo-A/NgR1 signaling pathway as a crucial therapeutic target for alleviating learning and memory dysfunction induced by high-altitude exposure.
基金National Natural Science Foundation of China,No.82074532,No.82374577,No.82305375,No.82305376,and No.82405567The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘BACKGROUND Peripheral neuropathy caused by diabetes is closely related to the vicious cycle of oxidative stress and mitochondrial dysfunction resulting from metabolic abnormalities.The effects mediated by the silent information regulator type 2 homolog-1(SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α(PGC-1α)axis present new opportunities for the treatment of type 2 diabetic peripheral neuropathy(T2DPN),potentially breaking this harmful cycle.AIM To validate the effectiveness of electroacupuncture(EA)in the treatment of T2DPN and investigate its potential mechanism based on the SIRT1/PGC-1αaxis.METHODS The effects of EA were evaluated through assessments of metabolic changes,morphological observations,and functional examinations of the sciatic nerve,along with measurements of inflammation and oxidative stress.Proteins related to the SIRT1/PGC-1αaxis,involved in the regulation of mitochondrial biogenesis and antioxidative stress,were detected in the sciatic nerve using Western blotting to explain the underlying mechanism.A counterevidence group was created by injecting a SIRT1 inhibitor during EA intervention to support the hypothesis.RESULTS In addition to diabetes-related metabolic changes,T2DPN rats showed significant reductions in pain threshold after 9 weeks,suggesting abnormal peripheral nerve function.EA treatment partially restored metabolic control and reduced nerve damage in T2DPN rats.The SIRT1/PGC-1αaxis,which was downregulated in the model group,was upregulated by EA intervention.The endogenous antioxidant system related to the SIRT1/PGC-1αaxis,previously inhibited in diabetic rats,was reactivated.A similar trend was observed in inflammatory markers.When SIRT1 was inhibited in diabetic rats,these beneficial effects were abolished.CONCLUSION EA can alleviate the symptoms of T2DNP in experimental rats,and its effects may be related to the mitochondrial biogenesis and endogenous antioxidant system mediated by the SIRT1/PGC-1αaxis.
文摘AIM: To study the protective effect of a natural antioxidant, melatonin, against multistress condition induced lipid peroxidation v/a determination of gastric damage and plasma malondialdehyde (MDA) level by high performance liquid chromatography in rats. METHODS: We compared indomethacin-induced gastric damage and MDA plasma level in three groups of rats: unoperated, bile duct ligated and sham-operated and evaluated the role of the melatonin on gastric damage and plasma MDA level. Indomethacin and melatonin were injected intraperitoneally in doses of 50 mg/kg and 20 mg/kg, respectively. Animals were killed 4 h after indomethacin injection. RESULTS: Indomethacin induced more severe gastric damage and plasma MDA level in bile duct ligated animals was significantly higher (3.1±0.04 μmol/L) than sham (2.8±0.04 μmol/L) and unoperated animals (1.4±0.08 μmol/L). Pretreatment with melatonin reduced indomethacin-induced gastric damage and plasma MDA level. CONCLUSION: Considering the results of this study, we suggest that in multistress conditions the intensity of gastric damage and the plasma MDA level are great and melatonin reduces the negative effect of lipid peroxidation and cell damage by oxidative stress in multistress conditions due to its antioxidizing activity.
基金the funding support from the National Natural Science Foundation of China(No.81574005and No.81874478)
文摘Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In this study,the antiapoptotic and anti-oxidative properties of lithospermic acid(LSA)on BMSCs exposed to hydrogen peroxide(H2O2)were investigated.Methods In the present study,we used H2O2 to induce oxidative injury on BMSCs.Reactive oxygen species(ROS)staining and superoxide dismutase(SOD)assay were performed.The expression levels of phosphorylated(p)-Akt,Bcl-2-associated X protein(Bax)and B-cell lymphoma 2(Bcl-2)were measured by Western blotting.Results LSA can significantly reduce H2O2-induced chromatin condensation and intracellular ROS levels,enhance the activity of SOD.Moreover,it can alleviate H2O2-induced apoptosis by upregulating Bcl-2 and p-Akt,down-regulating Bax,which was blocked by the PI3K inhibitor,LY294002.Conclusions Our results demonstrated that pretreatment with LSA could attenuate oxidative stress-induced apoptosis in BMSCs,which may be related with anti-oxidant properties and partly via modulating PI3K/Akt pathway,suggesting that pharmacologically manipulating BMSCs with LSA could be a promising drug to increase cell survival for BMSCs transplantation in musculoskeletal disorders of orthopaedic.
文摘Germinating wheat (Triticum aestivum L.) seeds were exposed to CdCI2 (50, 100 and 200 μM) for 48 h and some aspects of oxidative metabolism was assessed in the embryonic tissues. The germination percentage and the soluble protein content of the embryonic tissues were found to decrease with increasing of Cd concentration. There was elevation in superoxide dismutase (SOD) and decline in catalase (CAT) and peroxidase (POX) activities. The increasing of lipid peroxidation levels indicated the prevalence of oxidative stress in the tissues which was probably due to the alteration of antioxidative enzymes activities. The adding of ascorbate, along with CdCl2, has resulted in restoration of the Cd induced decline in CAT activity. Weakening in H2O2 detoxification system seems to be the principal reason behind Cd induced oxidative stress in germinating seeds. Thus, imposition of oxidative stress might be the consequence of cadmium stress and this finding may help in elucidating the mechanisms underlying cadmium mediated toxicity in germinating seeds.
基金supported by the National Natural Science Foundation of China,No.81771250(to XC)the Natural Science Foundation of Fujian Province,Nos.2020J011059(to XC),2020R1011004(to YW),2021J01374(to XZ)+1 种基金Medical Innovation Project of Fujian Province,No.2021 CXB002(to XC)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(to XC)。
文摘Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
基金supported by the National Natural Science Foundation of China,Nos.LY20H090018(to XL)and LY20H060008(to HS).
文摘Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.
文摘Currently,there is a lack of effective medicines capable of halting or reve rsing the progression of neurodegenerative disorde rs,including amyotrophic lateral sclerosis,Parkinson s disease,multiple sclerosis,or Alzheimer s disease.Given the unmet medical need,it is necessary to reevaluate the existing para digms of how to to rget these diseases.When considering neurodegenerative diseases from a systemic neurometabolic perspective,it becomes possible to explain the shared pathological features.This innovative approach presented in this paper draws upon exte nsive research conducted by the authors and researchers worldwide.In this review,we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases.We provide an overview of the risk factors associated with developing neurodegenerative disorders,including genetic,epigenetic,and environmental fa ctors.Additionally,we examine pathological mechanisms implicated in these diseases such as oxidative stress,accumulation of misfolded proteins,inflammation,demyelination,death of neurons,insulin resistance,dysbiosis,and neurotransmitter disturbances.Finally,we outline a proposal for the restoration of mitochondrial metabolism,a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
基金Supported by the Hebei Province Traditional Chinese Medicine Research Programme Project,No.2022428.
文摘BACKGROUND Oral cancer,which is caused by mucous membrane variation,represents a prevalent malignant tumor in the oral and maxillofacial region,posing a significant threat to patients’lives and safety.While surgical intervention stands as a cornerstone treatment for oral cancer patients,it carries the risk of incomplete treatment or high rates of postoperative recurrence.Hence,a multifaceted approach incorporating diverse treatment modalities is essential to enhance patient prognosis.AIM To analyze the application effect of Tongluo Jiedu prescription as adjuvant therapy and its influence on patient prognosis in patients with oral cancer.METHODS Eighty oral cancer patients in our hospital were selected and divided into the observation group and control group by a random number table.The control group was treated with continuous arterial infusion chemotherapy of cisplatin and 5-fluorouracil.The observation group was additionally given Tongluo Jiadu prescription.The inflammatory stress level,peripheral blood T-cell subsets,and immune function of the two groups were subsequently observed.SPSS 21.0 was used for data analysis.RESULTS The observation group demonstrated lower levels of interleukin-6 and C-reactive protein,and a higher level of tumor necrosis factor in comparison to the control group.After treatment,the immune function in the observation group was significantly better than in the control group.CONCLUSION Tongluo Jiedu prescription can improve the immune function and oxidative stress level of patients with oral cancer and accelerate the recovery process.
基金supported by the Cooperative Research Program for Agriculture Science and Technology Development(Project No.PJ015039032023)Rural Development Administration,Republic of Korea.
文摘Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)during short-term heat stress(HS)and recovery periods.Eight Holstein calves were randomly assigned to four treatment groups:no mineral supplementation(Con),inorganic minerals(IM),organic minerals(OM),and high-concentration organic minerals(HOM)and two thermal environments(HS and recovery)using 4×2 factorial arrangement in a crossover design of four periods of 35 d.Calves were maintained in a temperature-controlled barn.The experimental period consisted of 14 d of HS,14 d of recovery condititon,and a 7-d washing period.Results Body temperature and respiration rate were higher in HS than in the recovery conditions(P<0.05).Selenium concentration in serum was high in the HOM-supplemented calves in both HS(90.38μg/dL)and recovery periods(102.00μg/dL)(P<0.05).During the HS period,the serum cortisol was 20.26 ng/mL in the HOM group,which was 5.60 ng/mL lower than in the control group(P<0.05).The total antioxidant status was the highest in the OM group(2.71 mmol Trolox equivalent/L),followed by the HOM group during HS,whereas it was highest in the HOM group(2.58 mmol Trolox equivalent/L)during the recovery period(P<0.05).Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods,whereas SOD and GPX levels were not significantly affected(P>0.05).The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation;however,temperature-induced microbial structure shifts were indicated(PERMANOVA:P<0.05).At the phylum level,Firmicutes and Actinobacteria decreased,whereas Fibrobacteres,Spirochaetes,and Tenericutes increased(P<0.05),under HS conditions.The genus Treponema increased under HS conditions,while Christensenella was higher in recovery conditions(P<0.05).Conclusion HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves,suggesting that high organic mineral supplementation may alleviate the adverse effects of HS.
基金funded by the Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences(Nos.CI2021A04618 and CI2021A01401).
文摘Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
基金Supported by the Natural Science Foundation of China,No.82070856the Science and Technology Development Plan of Shandong Medical and Health Science,No.202102040075+1 种基金Scientific Research Plan of Weifang Health Commission,No.WFWSJK-2022-010 and No.WFWSJK-2022-008Weifang Science and Technology Development Plan,No.2021YX071 and No.2021YX070.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal jejunal bypass(DJB)surgery significantly improves brain glucose metabolism in T2DM rats,the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear.AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats.METHODS A T2DM rat model was induced via a high-glucose and high-fat diet,combined with a low-dose streptozotocin injection.T2DM rats were divided into DJB operation and Sham operation groups.DJB surgical intervention was carried out on T2DM rats.The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis.Proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry,quantitative real-time PCR,Western blotting,and immunofluorescence.RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery,compared to the T2DM-Sham groups of rats.Oxidative stress-related proteins(glucagon-like peptide 1 receptor,Nrf2,and HO-1)were significantly increased(P<0.05)in the hypothalamus of rats with T2DM after DJB surgery.DJB surgery significantly reduced(P<0.05)hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin(IL)-1βand IL-6.DJB surgery significantly reduced(P<0.05)the expression of factors related to neuronal injury(glial fibrillary acidic protein and Caspase-3)in the hypothalamus of T2DM rats and upregulated(P<0.05)the expression of neuroprotective factors(C-fos,Ki67,Bcl-2,and BDNF),thereby reducing hypothalamic injury in T2DM rats.CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.
文摘Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the article titled“Nε-carboxymethyl-lysine and inflammatory cytokines,markers,and mediators of coronary artery disease progression in diabetes”,published in the World Journal of Diabetes in 2024.This work directs us to reflect on the role of advanced glycation end products,which are pro-inflammatory products arising from the metabolism of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyllysine(NML).Recent studies have linked high levels of pro-inflammatory agents with the development of coronary artery disease(CAD),especially tumor necrosis factor alpha,interleukins,and C-reactive protein.These inflammatory agents increase the production of reactive oxygen species(ROS),of which people with diabetes are known to have an increased production.The increase in ROS promotes lipid peroxidation,which causes damage to myocytes,promoting myocardial damage.Furthermore,oxidative stress induces the binding of NML to its receptor RAGE,which in turn activates the nuclear factor-kB,and consequently,inflammatory cytokines.These inflammatory cytokines induce endothelial dysfunction,with increased expression of adhesion molecules,changes in endothelial permeability and changes in the expression of nitric oxide.In this sense,the therapeutic use of monoclonal antibodies(inflammatory reducers such as statins and sodium-glucose transport inhibitors)has demonstrated positive results in the regression of atherogenic plaques and consequently CAD.On the other hand,many studies have demonstrated a relationship between mitochondrial dynamics,diabetes,and cardiovascular diseases.This link occurs since ROS have their origin in the imbalance in glucose metabolism that occurs in the mitochondrial matrix,and this imbalance can have its origin in inadequate diet as well as some pathologies.Photobiomodulation(PBM)has recently been considered a possible therapeutic agent for cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress.In this sense,therapies such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with cardiovascular diseases.