期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Propene and CO oxidation on Pt/Ce-Zr-SO_4^(2-) diesel oxidation catalysts:Effect of sulfate on activity and stability 被引量:9
1
作者 顾蕾 陈晓 +3 位作者 周瑛 朱秋莲 黄海凤 卢晗锋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期607-616,共10页
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv... Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance. 展开更多
关键词 Diesel oxidation catalyst Pt/Ce-Zr-SO_4^(2-) catalyst Sulfur resistance Catalytic oxidation
下载PDF
Tuning the O–O bond formation pathways of molecular water oxidation catalysts on electrode surfaces via second coordination sphere engineering 被引量:2
2
作者 Qiming Zhuo Shaoqi Zhan +5 位作者 Lele Duan Chang Liu Xiujuan Wu Mårten S.G.Ahlquist Fusheng Li Licheng Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第3期460-469,共10页
A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylben... A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylbenzene(3 F) or styrene(St) blocking units on the surface of glassy carbon(GC) electrodes by electrochemical polymerization, in order to prepare the corresponding poly-1@GC, poly-1+P3 F@GC, and poly-1+PSt@GC functional electrodes. Kinetic measurements of the electrode surface reaction revealed that [Ru(bda)] triggers the O–O bond formation via(1) the radical coupling interaction between the two metallo-oxyl radicals(I2 M) in the homo-coupling polymer(poly-1), and(2) the water nucleophilic attack(WNA) pathway in poly-1+P3 F and poly-1+PSt copolymers. The comparison of the three electrodes revealed that the second coordination sphere of the water oxidation catalysts plays vital roles in stabilizing their reaction intermediates, tuning the O–O bond formation pathways and improving the water oxidation reaction kinetics without changing the first coordination structures. 展开更多
关键词 Water oxidation catalyst Second coordination sphere Dipole moment O-O bond formation Reaction kinetics
下载PDF
Progress in research on catalysts for catalytic oxidation of formaldehyde 被引量:38
3
作者 拜冰阳 乔琦 +1 位作者 李俊华 郝吉明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期102-122,共21页
Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The developme... Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered. 展开更多
关键词 FORMALDEHYDE Catalytic oxidation Metal oxide catalyst Noble metal catalyst Low-temperature catalytic activity
下载PDF
Single atom gold catalysts for low-temperature CO oxidation 被引量:9
4
作者 乔波涛 梁锦霞 +2 位作者 王爱琴 刘景月 张涛 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1580-1587,共8页
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The... Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation. 展开更多
关键词 GOLD Single atom catalyst CO oxidation STABILITY Low temperature
下载PDF
Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO_2 被引量:11
5
作者 宋明光 王筠松 +4 位作者 郭耘 王丽 詹望成 郭杨龙 卢冠忠 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1155-1165,共11页
The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to deter... The catalytic wet air oxidation of aniline over Ru catalysts supported on modified Ti 2 (Ti 2, Ti0.9Ce0.1O2, Ti0.9Zr0.1O2) is investigated. A series of characterization techniques are conducted to determine the relationship between the physico-chemical properties and the catalytic performance. As a result of the good metal dispersion and large number of surface oxygen species, the Ru/Ti0.9 Zr0.1O2 catalyst presents the best catalytic activity among the tested samples. The effects of the operating conditions on the reaction are investigated and the optimal reaction conditions are determined. Based on the relationship between the by-products concentration and the reaction time, the reaction path for the catalytic oxidation of aniline is established. Carbonaceous deposits on the surface of the support are known to be the main reason for catalyst deactivation. The catalysts maintain a constant activity even after three consecutive cycles. 展开更多
关键词 catalystic wet air oxidation PHYSICO-CHEMICAL Aniline removal Carbon deposites
下载PDF
Impacts of continuously regenerating trap and particle oxidation catalyst on the NO_2 and particulate matter emissions emitted from diesel engine 被引量:12
6
作者 Zhihua Liu Yunshan Ge +5 位作者 Jianwei Tan Chao He Asad Naeem Shah Yan Ding LinxiaoYu Wei Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第4期624-631,共8页
Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to e... Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere. 展开更多
关键词 continuously regenerating diesel particulate filter particles oxidation catalyst particle number diesel engine size distribution
原文传递
An assessment of how distance and diesel oxidation catalyst will impact thermal decomposition behaviors of particles 被引量:2
7
作者 Mengzhu Zhang Yunshan Ge +1 位作者 Chuanzhen Zhang Xin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期157-169,共13页
Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier tran... Decomposition mass loss and pyrolysis products analyses of particles sampled at various locations along the tailpipe of a Euro-IV diesel engine were performed using a thermo gravimetry in conjunction with Fourier transformation infrared spectrometrymass spectrum.Diesel particles were collected at the same location with and without diesel oxidation catalyst(DOC)mounted on the test engine separately.The three poles in thermal gravity-differential thermal gravity images suggested that the decomposition process of diesel particles could be divided into three stages which correspond to the decompositions of lower boiling substances,higher boiling substances and soot respectively.It is noticed that no matter whether DOC was mounted or not,the further the particles were sampled away from the engine block,the lower the peak temperatures and the heavier the mass losses within the first two stages,which indicated that the soluble organic fraction in the particle samples increased and therefore lowering the activation energy of thermal decomposition.Hydroxyl,ammonia,C_xH_y fragments,benzene,toluene,and phenol were found to be the primary products of particle decomposition,which didn’t change with the location of particle sample point.The employment of DOC increased the activation energy for particle oxidation and resulted in a higher peak temperature and lower mass loss within the first-stage.Moreover,the C=O stretching bands of aldehyde and ketone at 1771 cm-1 was only detected without a DOC,while the N02 peak at 1634 cm-1 was solely noticed with the presence of DOC.Compared to the first-stage pyrolysis products,more polycyclic aromatic hydrocarbons and less C_xH_y fragments were seen in the second-stage. 展开更多
关键词 Transport distance Diesel oxidation catalyst Thermal decomposition Pyrolysis products PARTICLE
原文传递
SnO_2 nano-sheet as an efficient catalyst for CO oxidation 被引量:2
8
作者 彭洪根 彭跃 +4 位作者 徐香兰 方修忠 刘玥 蔡建信 王翔 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期2004-2010,共7页
Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. S... Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes. 展开更多
关键词 SnO2 catalyst Nano-sheet Nano-rod Exposed active facet EO oxidation
下载PDF
Coupling metal oxide nanoparticle catalysts for water oxidation to molecular light absorbers
9
作者 Heinz Frei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期241-249,共9页
Water oxidation, as a mandatory reaction of solar fuels conversion systems, requires the use of light absorbers with electronic properties that are well matched with those of the multi-electron catalyst in order to ac... Water oxidation, as a mandatory reaction of solar fuels conversion systems, requires the use of light absorbers with electronic properties that are well matched with those of the multi-electron catalyst in order to achieve high efficiency. Molecular light absorbers offer flexibility in fine tuning of orbital energetics,and metal oxide nanoparticles have emerged as robust oxygen evolving catalysts. Hence, these material choices offer a promising approach for the development of photocatalytic systems for water oxidation.However, efficient charge transfer coupling of molecular light absorbers and metal oxide nanoparticle catalysts has proven a challenge. Recent new approaches toward the efficient coupling of these components based on synthetic design improvements combined with direct spectroscopic observation and kinetic evaluation of charge transfer processes are discussed. 展开更多
关键词 Water oxidation catalysts Metal oxides Molecular light absorbers Artificial photosynthesis Charge transfer Electronic coupling
下载PDF
Effects of a diesel oxidation catalyst on gaseous pollutants and fine particles from an engine operating on diesel and biodiesel
10
作者 Xiaoyan SHI Kebin HE +2 位作者 Weiwei SONG Xingtong WANG Jihua TAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第4期463-469,共7页
The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very eff... The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%-95% reduction in CO and 36%-70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%-32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%-97% decrease in OC and 3%-65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PMz.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20. 展开更多
关键词 diesel oxidation catalyst (DOC) diesel particulate matters elemental carbon (EC) organic carbon (OC) BIODIESEL
原文传递
Rh_2O_3/monoclinic CePO_4 composite catalysts for N_2O decomposition and CO oxidation
11
作者 Huan Liu Zhen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期109-115,共7页
CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in ai... CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in air at 900 ℃. Monoclinic CePO4 nanowires were prepared by calcining hexagonal CePO4 nanowires (prepared by hydrothermal synthesis at 150 ℃) in air at 900 ℃. Both monoclinic CePO4 materials were used to support Rh2O3 by impregnation using Rh(NO3)3 as a precursor (followed by calcination). The catalytic performance of Rh2O3/monoclinic CePO4 composite materials in N2O decomposition and CO oxidation was investigated. It was found that Rh2O3 supported on monoclinic CePO4 nanowims was much more active than Rh2O3 supported on monoclinic CePO4 nanoparticles. The stability of catalysts as a function of reaction time on stream was studied in both reactions. The influence of co-fed CO2, O2, and H2O on the catalytic activity in N20 decomposition was also studied. These catalysts were characterized by employing N2 adsorption-desorption, ICP-OES, XRD, TEM, XPS, H2-TPR, O2-TPD, and CO2-TPD. The correlation between physicochemical properties and catalytic properties was discussed. 展开更多
关键词 Rh2O3 CePO4 N2O decomposition CO oxidation catalyst
下载PDF
Enhanced CO oxidation over potassium-promoted Pt/Al_2O_3 catalysts:Kinetic and infrared spectroscopic study 被引量:1
12
作者 刘欢欢 贾爱平 +2 位作者 王瑜 罗孟飞 鲁继青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1976-1986,共11页
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co... A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species. 展开更多
关键词 CO oxidation Potassium Kinetics Pt/Al2O3 catalyst Promoting effect
下载PDF
Mass Spectrometric Studies of Selective Oxidation of n-Butane over a Vanadium Phosphorus Oxide Catalyst 被引量:2
13
作者 陈标华 黄晓峰 +2 位作者 李成岳 梁日忠 赵邦蓉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期177-182,共6页
The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response tec... The selective oxidation of n-butane to maleic anhydride (MA) on a vanadium-phosphorus oxide (VPO) catalyst was studied using on-line gas-chromatography combined with mass spectrometry(GC-MS) and transient response technique. The reaction intermediates, buterie and furan, were found in the reaction effluent under near industrial feed condition (3% butane+15%O2), while dihydrofuran was detected at high butane concentration (12% butane, 5%O2). Some intermediates of MA decomposition were also identified. Detection of these intermediates shows that the vanadium phosphorus oxides are able to dehydrogenate butane to butene, and butene further to form MA. Based on these observations, a modified scheme of reaction network is proposed. The transient experiments show that butane in the gas phase may directly react with oxygen both on the surface and from the metal oxide lattice, without a proceeding adsorption step. Gas phase oxygen can be adsorbed and transformed to surface lattice oxygen but it can not participate in selective oxidation. Adsorbed oxygen leads to deep oxidation, while lattice oxygen leads to selective oxidation. 展开更多
关键词 n-butane selective oxidation vanadium phosphorus oxide catalyst mass spectrometer reaction in- termediates transient response
下载PDF
Effect of Different Dopant in the Mo-V-Te-O Catalyst on the Performance of Selective Oxidation Propane to Acrolein 被引量:1
14
作者 HuaChangJIANG WeiMinLU HuiLinWAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第8期977-980,共4页
Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of ... Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of the Mo-V-Te-O catalyst. The catalysts were examined by XRD and H2-TPR. The XRD characteristic of the Mo-V-Te-P-O showed that the addition of P could aggrandize the (V0.07Mo0.93)5O14 phase. H2-TPR illuminated that the MoV0.3Te0.23P0.15On catalyst took on the best redox ability. 展开更多
关键词 ACROLEIN mixed metal oxides catalysts selective oxidation PROPANE XRD.
下载PDF
Base-free aerobic oxidation of glycerol on TiO_2-supported bimetallic Au–Pt catalysts 被引量:5
15
作者 Yihong Shen Yuming Li Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期669-673,共5页
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-... The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts. 展开更多
关键词 Glycerol aerobic oxidation Glyceraldehyde Dihydroxyacetone Bimetallic Au-Pt catalyst Synergetic effect
下载PDF
Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application 被引量:4
16
作者 Ning Han Wei Zhang +7 位作者 Wei Guo Hui Pan Bo Jiang Lingbao Xing Hao Tian Guoxiu Wang Xuan Zhang Jan Fransaer 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期514-546,共33页
The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both hav... The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O_(2) to water(H_2O) or from O_(2) to hydrogen peroxide(H_2O_(2)). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments(e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges. 展开更多
关键词 Oxygen evolution Oxygen reduction Oxide catalysts catalyst design Fuel cell Metal–air batteries
下载PDF
Synthesis and study of λ-MnO_2 supported Pt nanocatalyst for methanol electro-oxidation 被引量:3
17
作者 XIE Jia, LI Xiang, YU Zhihui, ZHANG Lijuan, LI Fan, and XIA Dingguo College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期187-192,共6页
A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission e... A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission electron microscopy(TEM), and energy disperse spectroscopy(EDS) were used for catalyst structure and morphology characterization, which showed that the metallic Pt particles were attached on a λ-MnO2 surface through the interaction between Pt and λ-MnO2.Cyclic voltammetry(CV) was used to test the catalytic activity of Pt/λ-MnO2 toward methanol oxidation, which showed that Pt/λ-MnO2 catalyst has much higher catalytic activity than baseline Pt/C catalyst. 展开更多
关键词 electrochemistry composite catalyst MnO2 Pt methanol oxidation
下载PDF
Effect of diluent and reaction parameter on selective oxidation of propane over MoVTeNb catalyst using nanoflow catalytic reactor
18
作者 Restu Kartiko Widi Sharifah Bee Abdul Hamid Robert Schlgl 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期130-134,共5页
The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic re... The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts. 展开更多
关键词 selective oxidation PROPANE acrylic acid MoVTeNb mixed oxide catalyst
下载PDF
Influence of CeO2 on Properties and Activity of Oxide Catalysts in Carbon Monoxide Oxidation
19
作者 Hoang Tien Cuong Luu Cam Loc Ho Si Thoang 《Journal of Chemistry and Chemical Engineering》 2010年第2期48-55,共8页
A series of catalysts on the basis of 10 wt.% CuO/y-AI203, 10 wt.% CuO + 10 wt.% Cr2O3/y-AI203 and 15 wt.% MnO2/y -A1203 have been prepared and modified by CeO2 with contents up to 20 wt.%. Physico-chemical propertie... A series of catalysts on the basis of 10 wt.% CuO/y-AI203, 10 wt.% CuO + 10 wt.% Cr2O3/y-AI203 and 15 wt.% MnO2/y -A1203 have been prepared and modified by CeO2 with contents up to 20 wt.%. Physico-chemical properties of the catalysts were determined by the methods of BET Adsorption, XRD, and TPR. Oxidative activity of the catalysts was studied at the temperature range 90-220 ℃and CO concentration of 3 mol.%. Addition of CeO2 led to changes in physico-chemical properties of the catalysts and formation of novel active centres that increased the activity of CuO and Cr203 containing catalysts, but decreased the activity of those, containing MnO2. The catalyst sample containing 10 wt.% CuO and 15 wt.% CeO2 has been shown to be the best one for complete conversion of CO. At the given conditions on this catalyst the complete oxidation of CO to CO2 occurred at 130 ~C during more than 500 h. 展开更多
关键词 CEO2 carbon monoxide oxide catalysts oxidation.
下载PDF
Pt/FeSnO(OH)_5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene
20
作者 俞瀚 曹周明 +1 位作者 魏笑峰 于岩 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第6期889-902,共14页
Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of... Pt/FeSnO(OH)_5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al_2O_3 during catalytic oxidation of benzene, Pt/Fe Sn O(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/Fe Sn O(OH)5 was more active than the oxidized Pt in Pt/γ-Al_2O_3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)_5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts. 展开更多
关键词 FeSnO(OH)5 supported Pt catalyst catalytic oxidation of benzene
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部