期刊文献+
共找到1,118篇文章
< 1 2 56 >
每页显示 20 50 100
An Experimental Observation of the Thermal Effects and NO Emissions during Dissociation and Oxidation of Ammonia in the Presence of a Bundle of Thermocouples in a Vertical Flow Reactor
1
作者 Samuel Ronald Holden Zhezi Zhang +2 位作者 Jian Gao Junzhi Wu Dongke Zhang 《Advances in Chemical Engineering and Science》 2023年第3期250-264,共15页
Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reacto... Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reactor temperatures between 700 K and 1000 K. The thermal effects during both NH<sub>3</sub> dissociation (endothermic) and oxidation (exothermic) were observed using a bundle of thermocouples positioned along the central axis of the quartz reactor, while the corresponding NH<sub>3</sub> conversions and nitrogen oxides emissions were determined by analysing the gas composition of the reactor exit stream. A stronger endothermic effect, as indicated by a greater temperature drop during NH<sub>3</sub> dissociation, was observed as the NH<sub>3</sub> feed concentration and reactor temperature increased. During NH<sub>3</sub> oxidation, a predominantly greater exothermic effect with increasing NH<sub>3</sub> feed concentration and reactor temperature was also evident;however, it was apparent that NH<sub>3</sub> dissociation occurred near the reactor inlet, preceding the downstream NH<sub>3</sub> and H<sub>2</sub> oxidation. For both NH<sub>3</sub> dissociation and oxidation, NH<sub>3</sub> conversion increased with increasing temperature and decreasing initial NH<sub>3</sub> concentration. Significant levels of NO<sub>X</sub> emissions were observed during NH<sub>3</sub> oxidation, which increased with increasing temperature. From the experimental results, it is speculated that the stainless-steel in the thermocouple bundle may have catalysed NH<sub>3</sub> dissociation and thus changed the reaction chemistry during NH<sub>3</sub> oxidation. 展开更多
关键词 AMMONIA NH3 Dissociation NH3 oxidation Flow reactor Nitrogen oxides (NOX) Thermal Effects
下载PDF
Comparison of Fe^(2+) oxidation by Acidithiobacillus ferrooxidans in rotating-drum and stirred-tank reactors 被引量:2
2
作者 金建 石绍渊 +2 位作者 刘国梁 张庆华 丛威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期804-811,共8页
Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioact... Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioactivity of At.ferrooxidans in the stirred-tank is higher than that in the rotating-drum in the absence of Al2O3 powder,but the biooxidation rate of Fe2+ decreases markedly from 0.23 g/(L·h) to 0.025 g/(L·h) with increasing the content of Al2O3 powder from 0 to 50%(mass fraction) in the stirred-tank probably due to the deactivation of At.ferrooxidans resulting from the collision and friction of solid particles.The increase in Al2O3 content has a little adverse effect on the bioactivity of At.ferrooxidans in the rotating-drum due to different mixing mechanisms of the two reactors.The biooxidation rate of Fe2+ in the rotating-drum is higher than that in the stirred-tank at the same content of Al2O3 powder,especially at high solid content.The higher bioactivity of At.ferrooxidans can be maintained for allowing high solid content in the rotating-drum reactor,but its application potential still needs to be verified further by the sulfide bioleaching for the property differences of Al2O3 powder and sulfide minerals. 展开更多
关键词 Fe2+ Acidithiobacillus ferrooxidans oxidation bioactivity solid content rotating-drum reactor stirred-tank reactor
下载PDF
Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor 被引量:28
3
作者 LIAO, Dexiang LI, Xiaoming +3 位作者 YANG, Qi ZENG, Guangming GUO, Liang YUE, Xiu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第8期940-944,共5页
The present lab-scale research reveals the enrichment of anaerobic ammonium oxidation microorganism from methanogenic anaerobic granular sludge and the effect of inorganic carbon(sodium bicarbonate)on anaerobic ammoni... The present lab-scale research reveals the enrichment of anaerobic ammonium oxidation microorganism from methanogenic anaerobic granular sludge and the effect of inorganic carbon(sodium bicarbonate)on anaerobic ammonium oxidation.The enrichment of anammox bacteria was carried out in a 7.0-L sequencing batch reactor(SBR)and the effect of bicarbonate on anammox was conducted in a 3.0-L SBR.Research results,especially the biomass,showed first signs of anammox activity after 54 d cultivation with synthetic wast... 展开更多
关键词 inorganic carbon anaerobic ammonium oxidation(anammox) sequencing batch reactor(SBR) NITRITATION methanogenic granular sludge
下载PDF
Partial oxidation of methane in Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.1)Ni_(0.1)O_(3-δ) ceramic membrane reactor 被引量:4
4
作者 Ensieh Ganji Babakhani Jafar Towfighi +3 位作者 Zahra Taheri Ali Nakhaei Pour Majid Zekordi Ali Taheri 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期519-525,共7页
Ba0.5Sr0.5Co0.8Fe0.1Ni0.1O3δ(BSCFNiO) perovskite oxides were synthesized using a combined EDTA-citrate complexation method,and then pressed into disk and applied in a membrane reactor.The performance of the BSCFNiO... Ba0.5Sr0.5Co0.8Fe0.1Ni0.1O3δ(BSCFNiO) perovskite oxides were synthesized using a combined EDTA-citrate complexation method,and then pressed into disk and applied in a membrane reactor.The performance of the BSCFNiO membrane reactor was studied for partial oxidation of methane over Ni/α-Al 2 O 3 catalyst.The time dependence of oxygen permeation rate and catalytic performance of BSCFNiO membrane during the catalyst initiation stage were investigated at 850 C.In unsteady state,oxygen permeation rate,methane conversion and CO selectivity were closely related to the state of the catalyst.After 300 min from the initial time,the reaction condition reached to steady state and oxygen permeation rate were obtained about 11.7cm 3 cm 2 min 1.Also,the performance of membrane reactor was studied at the temperatures between 750 and 950 C.The results demonstrated good performance for the membrane reactor,as CH 4 conversion and CO selectivity permeation rate reached 98% and 97.5%,respectively,and oxygen permeation rate was about 14.5 cm 3 cm 2 min 1 which was 6.8 times higher than that of air-helium gradient.Characterization of membrane surface by SEM after reaction showed that the original grains disappeared on both surfaces exposed to the air and reaction side,but XRD profile of the polished surface membrane indicated that the membrane bulk preserved the perovskite structure. 展开更多
关键词 PEROVSKITE membrane reactor partial oxidation of methane
下载PDF
Performance of a tubular oxygen-permeable membrane reactor for partial oxidation of CH_4 in coke oven gas to syngas 被引量:2
5
作者 Yuwen Zhang Hongwei Cheng Jiao Liu Weizhong Ding 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期280-283,共4页
A gas-tight BaCo 0.7 Fe 0.2 Nb 0.1 O 3-δ(BCFNO) tubular membrane was fabricated by hot pressure casting.And a membrane reactor with BCFNO tubular membrane and Ag-based sealant was readily constructed and applied to... A gas-tight BaCo 0.7 Fe 0.2 Nb 0.1 O 3-δ(BCFNO) tubular membrane was fabricated by hot pressure casting.And a membrane reactor with BCFNO tubular membrane and Ag-based sealant was readily constructed and applied to partial oxidation of CH4 in coke oven gas.At 875 ℃,95% of methane conversion,91% of H 2 and as high as 10 ml cm-2·min-1 of oxygen permeation flux were obtained.There was a good match in the coefficient of thermal expansion between Ag-based alloy and BCFNO membrane materials.The tubular BCFNO membrane reactor packed with Ni-based catalysts exhibited not only high activity but also good stability in hydrogen-enriched coke oven gas(COG) atmosphere. 展开更多
关键词 tubular oxygen-permeable membrane reactor partial oxidation coke oven gas hydrogen production
下载PDF
Simultaneous generation of electricity, ethylene and decomposition of nitrous oxide via protonic ceramic fuel cell membrane reactor
6
作者 Song Lei Ao Wang +3 位作者 Guowei Weng Ying Wu Jian Xue Haihui Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期359-368,I0010,共11页
Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of... Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of ethane(NDE)to ethylene,is an emerging and promising route,promoting the transformation of the ethylene industry from energy-intensive steam cracking process to new electrochemical membrane reactor technology.In this work,the NDE reaction is incorporated into a BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)electrolyte-supported protonic ceramic fuel cell membrane reactor to co-generate electricity and ethylene,utilizing the Nb and Cu doped perovskite oxide Pr_(0.6)Sr_(0.4)Fe_(0.8)Nb_(0.1)Cu_(0.1)O_(3-δ)(PSFNCu)as anode catalytic layer.Due to the doping of Nb and Cu,PSFNCu was endowed with high reduction tolerance and rich oxygen vacancies,showing excellent NDE catalytic performance.The maximum power density of the assembled reactor reaches 200 mW cm^(-2)at 750℃,with high ethane conversion(44.9%)and ethylene selectivity(92.7%).Moreover,the nitrous oxide decomposition was first coupled in the protonic ceramic fuel cell membrane reactor to consume the permeated protons.As a result,the generation of electricity,ethylene and decomposition of nitrous oxide can be simultaneously obtained by a single reactor.Specifically,the maximum power density of the cell reaches 208 mW cm^(-2)at 750℃,with high ethane conversion(45.2%),ethylene selectivity(92.5%),and nitrous oxide conversion(19,0%).This multi-win technology is promising for not only the production of chemicals and energy but also greenhouse gas reduction. 展开更多
关键词 Nonoxidative dehydrogenation of ethane ETHYLENE Nitrous oxide decomposition Protonic ceramic fuel cell membrane reactor Perovskite oxide
下载PDF
Photocatalytic ozonation-based degradation of phenol by ZnO—TiO_(2)nanocomposites in spinning disk reactor
7
作者 Xueqing Ren Jiahao Niu +5 位作者 Yan Li Lei Li Chao Zhang Qiang Guo Qiaoling Zhang Weizhou Jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期74-84,共11页
Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by adva... Spinning disk reactor(SDR)has emerged as a novel process intensification photocatalytic reactor,and it has higher mass transfer efficiency and photon utilization for the degradation of toxic organic pollutants by advanced oxidation processes(AOPs).In this study,ZnO—TiO_(2)nanocomposites were prepared by solgel method,and coated on the disk of SDR by impregnation-pull-drying-calcination method.The performance of catalyst was characterized by X-ray diffraction,scanning electron microscope,X-ray photoelectron spectroscopy,photoluminescence and ultraviolet—visible diffuse reflectance spectroscopy.Photocatalytic ozonation in SDR was used to remove phenol,and various factors on degradation effect were studied in detail.The results showed that the rate of degradation and mineralization reached 100%and 83.4%under UV light irradiation after 50 min,compared with photocatalysis and ozonation,the removal rate increased by 69.3%and 34.7%,and mineralization rate increased by 56.7%and 62.9%,which indicated that the coupling of photocatalysis and ozonation had a synergistic effect.The radical capture experiments demonstrated that the active species such as photogenerated holes(h^(+)),hydroxyl radicals(·OH),superoxide radical(·O_(2)-)were responsible for phenol degradation,and·OH played a leading role in the degradation process,while h+and·O_(2)^(-)played a non-leading role. 展开更多
关键词 Spinning disk reactor Photocatalytic ozonation ZnO-TiO_(2)nanocomposites Advanced oxidation processes
下载PDF
Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas
8
作者 安久涛 商克峰 +4 位作者 鲁娜 洪义 姜雨泽 李杰 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第2期155-160,共6页
The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) w... The oxidation of elemental mercury (Hg~) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) were employed. The parameters (e.g. Hg^0 oxidation efficiency, energy constant, energy yield, energy consumption, and O3 concentration) were discussed. From comparison of the two reactors, higher Hg^0 oxidation efficiency and energy constant in the SDPR system were obtained by using lower specific energy density. At the same applied voltage, energy yield in the SDPR system was larger than that in the CCDR system, and energy consumption in the SDPR system was much less. Additionally, more 03 was generated in the SDPR system. The experimental results showed that 98% of Hg^0 oxidation efficiency, 0.6 J·L^-1 of energy constant, 13.7 μg·J^-1 of energy yield, 15.1 eV·molecule^-1 of energy consumption, and 12.7 μg·J^-1 of O3 concentration were achieved in the SDPR system. The study reveals an alternative and economical technology for Hg^0 oxidation in the coal-fired flue gas. 展开更多
关键词 surface discharge plasma reactor concentric cylinder discharge reactor ele- mental mercury mercury oxidation
下载PDF
Treatment of Acetonitrile by Catalytic Supercritical Water Oxidation in Compact-Sized Reactor
9
作者 Benjaporn Youngprasert Kunakorn Poochinda Somkiat Ngamprasertsith 《Journal of Water Resource and Protection》 2010年第3期222-226,共5页
The objective of this research was to study the treatment of acetonitrile by catalytic supercritical water oxi-dation in a compact-sized tubular reactor, with an internal volume of 4.71 mL. Manganese dioxide was used ... The objective of this research was to study the treatment of acetonitrile by catalytic supercritical water oxi-dation in a compact-sized tubular reactor, with an internal volume of 4.71 mL. Manganese dioxide was used as the catalyst and H2O2 was used as the oxidant. The oxidation of acetonitrile in supercritical water was studied at 400-500 oC, 25-35 MPa, the flow rate of 2-4 mL/min, the initial concentration of acetonitrile 0.077-0.121 M and the %excess O2 of 50-200%. As a result, the products were mainly N2, CO2 and CO and acetonitrile can be decomposed > 93 % within a very short contact time (1.45-6.19 s). The oxidation process was carried out with respect to the conversion of acetonitrile by 25 factorial design. Regression models were obtained for correlating the conversion of acetonitrile with temperature and flow rate. The complete oxida-tion can be achieved at a condition as moderate as 400 oC, 25 MPa with the flow rate of 2 mL/min. 展开更多
关键词 ACETONITRILE SUPERCRITICAL Water oxidation Compact-Sized reactor
下载PDF
Liquid Phase Catalytic Oxidation of Aqueous Solutions That Contain Organic Matter in a Trickle-Bed Reactor
10
作者 Canan Uraz Suheyda Atalay 《Engineering(科研)》 2013年第1期39-43,共5页
In this study, catalytic wet air oxidation of wastewater that contains organic matter (phenol) is investigated in a laboratory scale trickle-bed reactor. The aim of this project is to determine the optimum operating c... In this study, catalytic wet air oxidation of wastewater that contains organic matter (phenol) is investigated in a laboratory scale trickle-bed reactor. The aim of this project is to determine the optimum operating conditions for the reaction of phenol in the wastewater with oxygen using a catalyst. For this purpose, the effects of temperature, gas flow rate, liquid space velocity and initial concentration of phenol on the conversion of phenol at constant pressure and the effect of pressure on the conversion of phenol at constant temperature are investigated. An industrial copper chromite catalyst was used in the experimental studies. It is seen from the experimental results, conversion of phenol increases with increasing temperature, pressure, gas flow rate and liquid space velocity;and also, it is seen that conversion of phenol decreases with increasing initial concentration of phenol. The conversion of phenol reaches at 130?C and 4 bar to 40%. It was also found that, 3 ppm copper amount was determined from the exit stream of the reactor. This result shows that cupper placed in the structure of the catalyst, mixes with the liquid stream during the reaction. 展开更多
关键词 Catalytic oxidation PHENOL TRICKLE-BED reactor
下载PDF
Mechanism of scaling on oxidation reactor wall in TiO_2 synthesis by chloride process
11
作者 周峨 袁章福 +2 位作者 王志 范先国 龚家竹 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期426-431,共6页
The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase rea... The mechanism of scaling on the oxidation reactor wall in TiO2 synthesis process was investigated. The formation of wall scale is mostly due to being deposited and sintered of TiO2 particle formed in the gas phase reaction of TiCl4 with O2. The gas-phase oxidation of TiCl4 was in a high temperature tubular flow reactor with quartz and ceramic rods put in center respectively. Scale layers are formed on reactor wall and two rods. Morphology and phase composition of them were characterized by transmission electron microscope(TEM), scan electron micrographs(SEM) and X-ray diffraction(XRD). The state of reactor wall has a little effect on scaling formation. With uneven temperature distribution along axial of reactor, the higher the reaction temperature is,the thicker the scale layer and the more compact the scale structure is. 展开更多
关键词 氯化法 二氧化钛 反应堆 氧化
下载PDF
Electrochemical oxidation of aniline by a novel Ti/TiO_xH_y/Sb-SnO_2 electrode 被引量:8
12
作者 李晓良 徐浩 延卫 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1860-1870,共11页
Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electroche... Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution. 展开更多
关键词 ANILINE Ti/TiOxHy/Sb-SnO2 electrode Electrochemical oxidation Chloride ions Three-dimensional reactor
下载PDF
Oxidative Dehydrogenation of Alkanes using Oxygen-Permeable Membrane Reactor
13
作者 阎瑞强 刘卫 宋春林 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期690-696,I0004,共8页
The oxidative dehydrogenation (ODH) reactions of ethane and propane were investigated in a catalytic membrane reactor, incorporating oxygen-permeable membranes based upon La2Ni0.9V0.1O4+δor Ba0.5Sr0.5Co0.8Fe0.2O3-... The oxidative dehydrogenation (ODH) reactions of ethane and propane were investigated in a catalytic membrane reactor, incorporating oxygen-permeable membranes based upon La2Ni0.9V0.1O4+δor Ba0.5Sr0.5Co0.8Fe0.2O3-δ. As a compromise between the occurrence of a measureable oxygen flux and excessive homogenous gas phase reactions, the measurements were conducted at an intermediate temperature, either at 550 or 650 oC. The results show the dominating role of the oxygen flux across the membrane and available sites at the membrane surface in primary activation of the alkane and, hence, in achieving high alkane conversions. The experimental data of ODH of propane and ethane on both membrane materials can be reconciled on the basis of Mars-van Krevelen mechanism, in which the alkane reacts with lattice oxygen on the membrane surface to produce the corresponding olefin. It is further demonstrated that the oxygen concentration in the gas phase and on the membrane surface is crucial for determining the olefin selectivity. 展开更多
关键词 oxidative dehydrogenation Membrane reactor Oxygen-permeable membrane
下载PDF
Efficient oxidation of monosaccharides to sugar acids under neutral condition in flow reactors with gold-supported activated carbon catalysts
14
作者 Ziqin Gong Zengyong Li +3 位作者 Xu Zeng Fengxia Yue Wu Lan Chuanfu Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第9期113-123,共11页
A significant reaction in the synthesis of biomass-based chemicals is the catalyst-based and targeted oxidation of monosaccharides into valuable sugar acids.In this study,an activated carbon supported gold catalyst wa... A significant reaction in the synthesis of biomass-based chemicals is the catalyst-based and targeted oxidation of monosaccharides into valuable sugar acids.In this study,an activated carbon supported gold catalyst was used to oxidize glucose and xylose to gluconic acid and xylonic acid under neutral condition.Optimization of reaction conditions for the catalysts was performed using both a batch reactor and a flow-through reactor.In a batch reactor,the yields of gluconic and xylonic acid reached 93%and 92%,respectively,at 90℃ within 180 min.In a flow reactor,both reactions reached a similar yield at 80℃ with the weight hourly space velocity of 47.1 h^(-1).The reaction kinetics were explored in the flow reactor.The oxidation of glucose and xylose to gluconic and xylonic acid followed a first-order kinetics and the turnover frequency was 0.195 and 0.161 s^(-1),respectively.The activation energy was evaluated to be 60.58 and 59.30 kJ·mol^(-1),respectively.This study presents an environmentally friendly and feasible method for the selective oxidation of monosaccharides using an activated carbon supported gold catalyst,benefiting the high-value application of carbohydrates. 展开更多
关键词 monosaccharides oxidation gluconic acid xylonic acid flow reactor KINETICS
原文传递
Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst:A simulation study using experimental kinetic model 被引量:8
15
作者 Nakisa Yaghobi Mir Hamid Reza Ghoreishy 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期8-16,共9页
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separat... The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio. 展开更多
关键词 oxidative coupling of methane SIMULATION KINETICS fixed bed catalytic reactor ETHYLENE
下载PDF
Hydrogen production from coke oven gas over LiNi/γ-Al_2O_3 catalyst modified by rare earth metal oxide in a membrane reactor 被引量:6
16
作者 Zhibin Yang Yunyan Zhang Weizhong Ding Yuwen Zhang Peijun Shen Yuding Zhou Yong Liu Shaoqing Huang Xionggang Lu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期407-414,共8页
The performance of LiNi/γ-Al2O3 catalysts modified by rare earth metal oxide (La2O3 or CeO2) packed on BCFNO membrane reactor was discussed for the partial oxidation of methane (POM) in coke oven gas (COG) at 8... The performance of LiNi/γ-Al2O3 catalysts modified by rare earth metal oxide (La2O3 or CeO2) packed on BCFNO membrane reactor was discussed for the partial oxidation of methane (POM) in coke oven gas (COG) at 875 ℃. The NiO/γ-Al2O3 catalysts with different amounts of La2O3 and CeO2 were prepared with the same preparation method and under the same condition in order to compare the reaction performance (oxygen permeation, CH4 conversion, H2 and CO selectivity) on the membrane reactor. The results show that the oxygen permeation flux increased significantly with LiNiREOx/γ-Al2O3 (RE = La or Ce) catalysts by adding the element of rare earth especially the Ce during the POM in COG. Such as, the Li15wt%CeO29wt%NiO/γ-Al2O3 catalyst with an oxygen permeation flux of 24.71 ml·cm^-2·min^-1 and a high CH4 conversion was obtained in 875 ℃. The resulted high oxygen permeation flux may be due to the added Ce that inhibited the strong interaction between Ni and Al2O3 to form the NiAl2O4 phase. In addition, the introduction of Ce leads up to an important property of storing and releasing oxygen. 展开更多
关键词 rare earth metal oxide oxygen permeation membrane reactor
下载PDF
Oxidation behaviors of wrought nickel-based superalloys in various high temperature environments 被引量:9
17
作者 Changheui JANG Daejong KIM +3 位作者 Donghoon KIM Injin SAH Woo-Seog RYU Young-sung YOO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1524-1531,共8页
Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condit... Oxidation characteristics of Alloy 617 and Haynes 230 at 900 oC in simulated helium environment,hot steam environment containing H2 as well as in air and pure helium conditions were investigated.Compared to air condition,the oxidation rate of Alloy 617 was not significantly affected in helium and hot steam environments,while Haynes 230 showed lower oxidation rate in helium environment.On the other hand,the oxide morphology and structure of Alloy 617 were strongly affected by the environments,but those of Haynes 230 were less dependent on the environments.For Haynes 230,a Cr2O3 inner layer and a protective MnCr2O4 outer layer were formed in all environments,which contributed to the better oxidation resistance.As the mechanical properties,such as creep and tensile properties,were significantly affected by the oxidation behaviors,surface treatment methods to enhance oxidation resistance of these alloys should be developed. 展开更多
关键词 oxidation nickel-based superalloys very high temperature reactor (VHTR) impure helium hot steam
下载PDF
Nitrous Oxide Production in a Sequence Batch Reactor Wastewater Treatment System Using Synthetic Wastewater 被引量:5
18
作者 MAO Jian JIANG Xiao-Qin +4 位作者 YANG Lin-Zhang ZHANG Jian QIAO Qing-Yun HE Chen-Da YIN Shi-Xue 《Pedosphere》 SCIE CAS CSCD 2006年第4期451-456,共6页
The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of ... The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of 4 h for aeration, 3.5 h for stirring without aeration, 0.5 h for settling and drainage, and 4 h of idle. The sludge was acclimated by running the system to achieve a stable running state as chemical oxygen demand, NO2^-, NO3^-, NH4^+, pH, and N2O. indicated by rhythmic changes of total N, dissolved oxygen, Under the present experimental conditions measured nitrous oxide emitted from the off-gas in the aerobic and anaerobic phases, respectively, accounted for 8.6%-16.1% and 0-0.05% of N removed, indicating that the aerobic phase was the main source of N2O emission from the system. N2O dissolved in discharged water was considerable in term of concentration. Thus, measures to be developed for the purpose of reducing N2O emission from the system should be effective in the aeration phase. 展开更多
关键词 DENITRIFICATION NITRIFICATION nitrous oxide sequence batch reactor wastewater treatment system
下载PDF
Scale up and stability test for oxidative coupling of methane over Na_2WO_4-Mn/SiO_2 catalyst in a 200 ml fixed-bed reactor 被引量:3
19
作者 Haitao Liu Xiaolai Wang +3 位作者 Dexin Yang Runxiong Gao Zhonglai Wang Jian Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期59-63,共5页
The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction ... The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction conditions were investigated in detail. The results showed that, with increasing reaction temperature, the gas-phase reaction was enhanced and a significant amount of methane was converted into COx; with the CH4/O2 molar ratio of 5, the highest C2 (ethylene and ethane) yield of 25% was achieved; the presence of steam (as diluent) had a positive effect on the C2 selectivity and yield. Under lower methane gaseous hourly space velocity (GHSV), higher selectivity and yield of C2 were obtained as the result of the decrease of released heat energy. In 100 h reaction time, the C2 selectivity of 66%-61% and C2 yield of 24.2%-25.4% were achieved by a single pass without any significant loss in catalytic performance. 展开更多
关键词 scale up oxidative coupling of methane W-Mn/SiO2 200 ml fixed-bed reactor
下载PDF
Correlation of anaerobic ammonium oxidation and denitrification 被引量:2
20
作者 ZHU Jing-ping HU Yong-you LIANG Hui-qiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期227-231,共5页
The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs) (0^#-6^#) which had been run under stable anaerobic ammonium oxidation (Anammox). By mean... The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs) (0^#-6^#) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4^#-N, NO2^--N, NO3^--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2^# reactor in which COD/NH4^+ -N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4^+-N consumed : NO2^- -N consumed : NO3^- -N produced was 1:1.38:0.19 in 0^# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4^+-N was fed for the reactors, the ratio of NO2^- -N consumed: NH4^+-N consumed was in the range of 1.51-2.29 and the ratio of NO;-N produced: NH4^+ -N consumed in the range of 0 -0.05. 展开更多
关键词 anaerobic ammonium oxidation (Anammox) anaerobic sequencing batch reactor (ASBR) biological denitrification DENITRIFICATION
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部